805 resultados para galaxy : quasar : individual
Resumo:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.
Resumo:
The present longitudinal study examines the interaction of learner variables (gender, motivation, self-efficacy and first language literacy) and their influence on second language learning outcomes. The study follows English learners of French from Year 5 in primary school (aged 9-10) to the first year in secondary school (Year 7 aged 11-12). Language outcomes were measured by two oral production tasks; a sentence repetition task and a photo description task both of which were administered at three time points. Longitudinal data on learner attitudes and motivation were collected via questionnaires. Teacher assessment data for general first language literacy attainment were also provided. The results show a great deal of variation in learner attitudes and outcomes and that there is a complex relationship between first language literacy, self-efficacy, gender and attainment. For example, in general, girls held more positive attitudes to boys and were more successful. However, the inclusion of first language ability, which explained 30-40% of variation, shows that gender differences in attitudes and outcomes are likely mediated by first language literacy and prior learning experience.
Resumo:
Purpose - this paper focuses on reducing the margin for leadership error in meeting strategic aims by forming a more robust approach to developing a broader and more reliable set of leadership skills to provide a greater likelihood of strategic alignment between corporate and individual need, increasing both of their respective shelve lives.
Resumo:
Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.
Resumo:
Objectives: To assess the role of the individual determinants on the inequalities of dental services utilization among low-income children living in the working area of Brazilian`s federal Primary Health Care program, which is called Family Health Program (FHP), in a big city in Southern Brazil. Methods: A cross-sectional population-based study was performed. The sample included 350 children, ages 0 to 14 years, whose parents answered a questionnaire about their socioeconomic conditions, perceived needs, oral hygiene habits, and access to dental services. The data analysis was performed according to a conceptual framework based on Andersen`s behavioral model of health services use. Multivariate models of logistic regression analysis instructed the hypothesis on covariates for never having had a dental visit. Results: Thirty one percent of the surveyed children had never had a dental visit. In the bivariate analysis, higher proportion of children who had never had a dental visit was found among the very young, those with inadequate oral hygiene habits, those without perceived need of dental care, and those whose family homes were under absent ownership. The mechanisms of social support showed to be important enabling factors: children attending schools/kindergartens and being regularly monitored by the FHP teams had higher odds of having gone to the dentist, even after adjusting for socioeconomic, demographic, and need variables. Conclusions: The conceptual framework has confirmed the presence of social and psychosocial inequalities on the utilization pattern of dental services for low-income children. The individual determinants seem to be important predictors of access.
Resumo:
Influences of inbreeding on daily milk yield (DMY), age at first calving (AFC), and calving intervals (CI) were determined on a highly inbred zebu dairy subpopulation of the Guzerat breed. Variance components were estimated using animal models in single-trait analyses. Two approaches were employed to estimate inbreeding depression: using individual increase in inbreeding coefficients or using inbreeding coefficients as possible covariates included in the statistical models. The pedigree file included 9,915 animals, of which 9,055 were inbred, with an average inbreeding coefficient of 15.2%. The maximum inbreeding coefficient observed was 49.45%, and the average inbreeding for the females still in the herd during the analysis was 26.42%. Heritability estimates were 0.27 for DMY and 0.38 for AFC. The genetic variance ratio estimated with the random regression model for CI ranged around 0.10. Increased inbreeding caused poorer performance in DMY, AFC, and CI. However, some of the cows with the highest milk yield were among the highly inbred animals in this subpopulation. Individual increase in inbreeding used as a covariate in the statistical models accounted for inbreeding depression while avoiding overestimation that may result when fitting inbreeding coefficients.
Resumo:
We report the discovery of the first known symbiotic star in IC10, a starburst galaxy belonging to the Local Group, at a distance of similar to 750 kpc. The symbiotic star was identified during a survey of emission-line objects. It shines at V = 24.62 +/- 0.04, V - R(C) = 2.77 +/- 0.05 and R(C) - I(C) = 2.39 +/- 0.02, and suffers from E(B-V) = 0.85 +/- 0.05 reddening. The spectrum of the cool component well matches that of solar neighbourhood M8III giants. The observed emission lines belong to Balmer series, [S II], [N II] and [O III]. They suggest a low electronic density, negligible optical depth effects and 35 000 < T(eff) < 90 000 K for the ionizing source. The spectrum of the new symbiotic star in IC10 is an almost perfect copy of that of Hen 2-147, a well-known Galactic symbiotic star and Mira.
Resumo:
We derive fundamental parameters of the embedded cluster DBSB 48 in the southern nebula Hoffleit 18 and the very young open cluster Trumpler 14, by means of deep JHK(s) infrared photometry. We build colour-magnitude and colour-colour diagrams to derive reddening and age, based on main sequence and pre-main sequence distributions. Radial stellar density profiles are used to study cluster structure and guide photometric diagram extractions. Field-star decontamination is applied to uncover the intrinsic cluster sequences in the diagrams. Ages are inferred from K-excess fractions. A prominent pre-main sequence population is present in DBSB 48, and the K-excess fraction f(K) = 55 +/- 6% gives an age of 1.1 +/- 0.5 Myr. A mean reddening of A(Ks) = 0.9 +/- 0.03 was found, corresponding to A(v) = 8.2 +/- 0.3. The cluster CMD is consistent with the far kinematic distance of 5 kpc for Hoffleit 18. For Trumpler 14 we derived similar parameters as in previous studies in the optical, in particular an age of 1.7 +/- 0.7 Myr. The fraction of stars with infrared excess in Trumpler 14 is f(K) = 28 +/- 4%. Despite the young ages, both clusters are described by a King profile with core radii R-core = 0.46 +/- 0.05 pc and R-core = 0.35 +/- 0.04 pc, respectively, for DBSB 48 and Trumpler 14. Such cores are smaller than those of typical open clusters. Small cores are probably related to the cluster formation and/or parent molecular cloud fragmentation. In DBSB 48, the magnitude extent of the upper main sequence is Delta K-s approximate to 2 mag, while in Trumpler 14 it is Delta K-s approximate to 5 mag, consistent with the estimated ages. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We explore the prospects of predicting emission-line features present in galaxy spectra given broad-band photometry alone. There is a general consent that colours, and spectral features, most notably the 4000 angstrom break, can predict many properties of galaxies, including star formation rates and hence they could infer some of the line properties. We argue that these techniques have great prospects in helping us understand line emission in extragalactic objects and might speed up future galaxy redshift surveys if they are to target emission-line objects only. We use two independent methods, Artificial Neural Networks (based on the ANNz code) and Locally Weighted Regression (LWR), to retrieve correlations present in the colour N-dimensional space and to predict the equivalent widths present in the corresponding spectra. We also investigate how well it is possible to separate galaxies with and without lines from broad-band photometry only. We find, unsurprisingly, that recombination lines can be well predicted by galaxy colours. However, among collisional lines some can and some cannot be predicted well from galaxy colours alone, without any further redshift information. We also use our techniques to estimate how much information contained in spectral diagnostic diagrams can be recovered from broad-band photometry alone. We find that it is possible to classify active galactic nuclei and star formation objects relatively well using colours only. We suggest that this technique could be used to considerably improve redshift surveys such as the upcoming Fibre Multi Object Spectrograph (FMOS) survey and the planned Wide Field Multi Object Spectrograph (WFMOS) survey.
Resumo:
We present a map of the spiral structure of the Galaxy, as traced by molecular carbon monosulphide (CS) emission associated with IRAS sources which are believed to be compact H II regions. The CS line velocities are used to determine the kinematic distances of the sources in order to investigate their distribution in the galactic plane. This allows us to use 870 objects to trace the arms, a number larger than that of previous studies based on classical H II regions. The distance ambiguity of the kinematic distances, when it exists, is solved by different procedures, including the latitude distribution and an analysis of the longitude-velocity diagram. The study of the spiral structure is complemented with other tracers: open clusters, Cepheids, methanol masers and H II regions. The well-defined spiral arms are seen to be confined inside the corotation radius, as is often the case in spiral galaxies. We identify a square-shaped sub-structure in the CS map with that predicted by stellar orbits at the 4:1 resonance (four epicycle oscillations in one turn around the galactic centre). The sub-structure is found at the expected radius, based on the known pattern rotation speed and epicycle frequency curve. An inner arm presents an end with strong inwards curvature and intense star formation that we tentatively associate with the region where this arm surrounds the extremity of the bar, as seen in many barred galaxies. Finally, a new arm with concave curvature is found in the Sagitta to Cepheus region of the sky. The observed arms are interpreted in terms of perturbations similar to grooves in the gravitational potential of the disc, produced by crowding of stellar orbits.
Resumo:
We present two-dimensional stellar and gaseous kinematics of the inner 120 x 250 pc2 of the LINER/Seyfert 1 galaxy M81, from optical spectra obtained with the Gemini Multi-Object Spectrograph (GMOS) integral field spectrograph on the Gemini-North telescope at a spatial resolution of approximate to 10 pc. The stellar velocity field shows circular rotation and, overall, is very similar to the published large-scale velocity field, but deviations are observed close to the minor axis which can be attributed to stellar motions possibly associated with a nuclear bar. The stellar velocity dispersion of the bulge is 162 +/- 15 km s-1, in good agreement with previous measurements and leading to a black hole mass of M(BH) = 5.5+3.6(-2.0) x 107 M(circle dot) based on the M(BH)-Sigma relationship. The gas kinematics is dominated by non-circular motions and the subtraction of the stellar velocity field reveals blueshifts of approximate to-100 km s-1 on the far side of the galaxy and a few redshifts on the near side. These characteristics can be interpreted in terms of streaming towards the centre if the gas is in the plane. On the basis of the observed velocities and geometry of the flow, we estimate a mass inflow rate in ionized gas of approximate to 4.0 x 10-3 M(circle dot) yr-1, which is of the order of the accretion rate necessary to power the LINER nucleus of M81. We have also applied the technique of principal component analysis (PCA) to our data, which reveals the presence of a rotating nuclear gas disc within approximate to 50 pc from the nucleus and a compact outflow, approximately perpendicular to the disc. The PCA combined with the observed gas velocity field shows that the nuclear disc is being fed by gas circulating in the galaxy plane. The presence of the outflow is supported by a compact jet seen in radio observations at a similar orientation, as well as by an enhancement of the [O i]/H alpha line ratio, probably resulting from shock excitation of the circumnuclear gas by the radio jet. With these observations we are thus resolving both the feeding - via the nuclear disc and observed gas inflow, and the feedback - via the outflow, around the low-luminosity active nucleus of M81.
Resumo:
We present mid-infrared (mid-IR) spectra of the Compton-thick Seyfert 2 galaxy NGC 3281, obtained with the Thermal-Region Camera Spectrograph at the Gemini-South telescope. The spectra present a very deep silicate absorption at 9.7 mu m, and [S IV] 10.5 mu m and [Ne II] 12.7 mu m ionic lines, but no evidence of polycyclic aromatic hydrocarbon emission. We find that the nuclear optical extinction is in the range 24 mag <= A(V) <= 83 mag. A temperature T = 300 K was found for the blackbody dust continuum component of the unresolved 65 pc nucleus and the region at 130 pc SE, while the region at 130 pc NW reveals a colder temperature (200 K). We describe the nuclear spectrum of NGC 3281 using a clumpy torus model that suggests that the nucleus of this galaxy hosts a dusty toroidal structure. According to this model, the ratio between the inner and outer radius of the torus in NGC 3281 is R(0)/R(d) = 20, with 14 clouds in the equatorial radius with optical depth of tau(V) = 40 mag. We would be looking in the direction of the torus equatorial radius (i = 60 degrees), which has outer radius of R(0) similar to 11 pc. The column density is N(H) approximate to 1.2 x 10(24) cm(-2) and the iron K alpha equivalent width (approximate to 0.5-1.2 keV) is used to check the torus geometry. Our findings indicate that the X-ray absorbing column density, which classifies NGC 3281 as a Compton-thick source, may also be responsible for the absorption at 9.7 mu m providing strong evidence that the silicate dust responsible for this absorption can be located in the active galactic nucleus torus.