880 resultados para fuzzy multi-objective linear programming (FMOLP)
Resumo:
Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm
Resumo:
Committees of classifiers may be used to improve the accuracy of classification systems, in other words, different classifiers used to solve the same problem can be combined for creating a system of greater accuracy, called committees of classifiers. To that this to succeed is necessary that the classifiers make mistakes on different objects of the problem so that the errors of a classifier are ignored by the others correct classifiers when applying the method of combination of the committee. The characteristic of classifiers of err on different objects is called diversity. However, most measures of diversity could not describe this importance. Recently, were proposed two measures of the diversity (good and bad diversity) with the aim of helping to generate more accurate committees. This paper performs an experimental analysis of these measures applied directly on the building of the committees of classifiers. The method of construction adopted is modeled as a search problem by the set of characteristics of the databases of the problem and the best set of committee members in order to find the committee of classifiers to produce the most accurate classification. This problem is solved by metaheuristic optimization techniques, in their mono and multi-objective versions. Analyzes are performed to verify if use or add the measures of good diversity and bad diversity in the optimization objectives creates more accurate committees. Thus, the contribution of this study is to determine whether the measures of good diversity and bad diversity can be used in mono-objective and multi-objective optimization techniques as optimization objectives for building committees of classifiers more accurate than those built by the same process, but using only the accuracy classification as objective of optimization
Resumo:
Multi-objective combinatorial optimization problems have peculiar characteristics that require optimization methods to adapt for this context. Since many of these problems are NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many different approaches using Ant Colony Optimization (ACO) have been proposed. In this work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared to two other optimizers found in the literature. A set of 18 instances from two distinct types of graphs are used, as well as a specific multiobjective performance assessment methodology. Initial experiments showed that the proposed algorithm is able to generate better approximation sets than the other optimizers for all instances. In the second part of this work, an experimental analysis is conducted, using several different multiobjective ACO proposals recently published and the same instances used in the first part. Results show each type of instance benefits a particular type of instance benefits a particular algorithmic approach. A new metaphor for the development of multiobjective ACOs is, then, proposed. Usually, ants share the same characteristics and only few works address multi-species approaches. This works proposes an approach where multi-species ants compete for food resources. Each specie has its own search strategy and different species do not access pheromone information of each other. As in nature, the successful ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced here shows to be able to inherit the behavior of strategies that are successful for different types of problems. Results of computational experiments are reported and show that the proposed approach is able to produce significantly better approximation sets than other methods
Resumo:
Este trabalho apresenta um modelo de otimização-simulação aplicado em um estudo de caso real no setor de cilindros para laminação de uma siderúrgica, buscando melhorar o gerenciamento da área/equipamento gargalo da linha de produção. A simulação atuou em conjunto com um modelo de otimização da programação linear inteira (PLI) para melhorar o atendimento de prazo junto aos clientes em uma produção não seriada. Como resultado deste procedimento combinado da PLI e simulação, o processo produtivo foi otimizado e as filas de espera e o lead-time foram reduzidos, melhorando o atendimento aos clientes.
Resumo:
Este trabalho apresenta a modelagem de um problema particular de Programação da Produção numa Fundição Automatizada e sua resolução por um algoritmo de busca heurística, que explora a estrutura do problema.
Resumo:
In this letter, a genetic algorithm (GA) is applied to solve - the static and multistage transmission expansion planning (TEP) problem. The characteristics of the proposed GA to solve the TEP problem are presented. Results using some known systems show that the proposed GA solves a smaller number of linear programming problems in order to find the optimal solutions and obtains a better solution for the multistage TEP problem.
Resumo:
This work presents a mathematical model for helping mills choose sugarcane varieties for planting. It maximizes crop residual biomass energy balance by considering the difference between generated and consumed energy in the process of transferring this biomass from the field to the processing center; it takes into account enterprise demand restrictions and cane planting area. For this full zero-one linear programming techniques were proposed. The model is viable for choosing sugarcane varieties that would benefit sugarcane production and industrial systems, by reducing crop residue and increasing final energy production. (c) 2006 Published by Elsevier Ltd.
Resumo:
This paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A formulation used to determine the time-optimal geomagnetic attitude maneuvers subject to dynamic and geometric constraints is proposed in this paper. This was obtained by a direct search procedure based on a control function parametrization method, using linear programming to obtain numerical suboptimal solutions by linear perturbation. Due to its characteristics it can be used in small computers and to generate computer programs of general application. The dynamic modeling, the magnetic torque model and the suboptimal control procedure are presented. Simulation runs have verified the feasibility of the formulation thus derived and have shown a notable improvement in performance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The generation expansion planning (GEP) problem consists in determining the type of technology, size, location and time at which new generation units must be integrated to the system, over a given planning horizon, to satisfy the forecasted energy demand. Over the past few years, due to an increasing awareness of environmental issues, different approaches to solve the GEP problem have included some sort of environmental policy, typically based on emission constraints. This paper presents a linear model in a dynamic version to solve the GEP problem. The main difference between the proposed model and most of the works presented in the specialized literature is the way the environmental policy is envisaged. Such policy includes: i) the taxation of CO(2) emissions, ii) an annual Emissions Reduction Rate (ERR) in the overall system, and iii) the gradual retirement of old inefficient generation plants. The proposed model is applied in an 11-region to design the most cost-effective and sustainable 10-technology US energy portfolio for the next 20 years.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the Benders decomposition technique and Branch and Bound algorithm used in the reactive power planning in electric energy systems. The Benders decomposition separates the planning problem into two subproblems: an investment subproblem (master) and the operation subproblem (slave), which are solved alternately. The operation subproblem is solved using a successive linear programming (SLP) algorithm while the investment subproblem, which is an integer linear programming (ILP) problem with discrete variables, is resolved using a Branch and Bound algorithm especially developed to resolve this type of problem.
Resumo:
Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.
Resumo:
In this work the problem of defects location in power systems is formulated through a binary linear programming (BLP) model based on alarms historical database of control and protection devices from the system control center, sets theory of minimal coverage (AI) and protection philosophy adopted by the electric utility. In this model, circuit breaker operations are compared to their expected states in a strictly mathematical manner. For solving this BLP problem, which presents a great number of decision variables, a dedicated Genetic Algorithm (GA), is proposed. Control parameters of the GA, such as crossing over and mutation rates, population size, iterations number and population diversification, are calibrated in order to obtain efficiency and robustness. Results for a test system found in literature, are presented and discussed. © 2004 IEEE.