934 resultados para fluorescence spectroscopy • fluorescent probes • micelles, sodium, sensors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nucleolus organizer regions (NORs) were analysed in two related and geographically close populations of Eigenmannia sp.1 (Pisces, Gymnotoidei, Sternopygidae) using silver staining and fluorescence in situ hybridization (FISH). The two populations differed in their AS-NOR phenotypes, displaying fixed differences in the NOR-bearing chromosome pairs. FISH with rDNA probes showed that these differences were due to the location of rDNA cistrons. This finding, showing fixed NOR differences between two populations belonging to the same species in a connected river system, is highly significant in terms of evolutionary change, possibly indicating an initial step of genetic differentiation. This result also has important implications from the cytosystematic point of view, as NORs usually have a very constant karyotypic location in fish species and have been used as species-specific chromosome markers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sodium monofluoroacetate was first identified in Dichapetalum cymosum, a South African plant that can cause livestock poisoning and death. After, several other plants also showed to contain this toxin, which leads to the "sudden death". Mascagnia rigida, a well identified poisonous plant, commonly found in northeast of Brazil also cause sudden death in cattle, which shows clinical signs similar to those produced by the ingestion of plants that contain monofluoroacetate. Our aim was to identify the toxic compound present in the aqueous extract of M. rigida. For this purpose, the dried and milled plant was extracted; the extract was lyophilized and submitted to successive chromatographic process, until the desired purity of the active compound was achieved. The study of this material by planar chromatography and by infrared spectrometry indicated that the toxin can be a mixture of mono, di and trifluoroacetate. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The novel coumarin-based 'turn-on' fluorescent probe (E)-3-(2,5-dimethoxybenzylideneamino)-7-hydroxy-2H-chromen-2-one (MGM) was designed, synthesized, and characterized. This compound shows high selectivity for Cu+2, combined with a large fluorescence enhancement upon binding to Cu2+. Benesi-Hildebrand and Job plots demonstrate that the stoichiometry of the Cu+2 complex formed is 2:1. Preliminary studies employing epifluorescence microscopy demonstrated that Cu+2 could be imaged in human neuroblastoma SH-SY5Y cells treated with MGM. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrostatic and hydrophobic interactions govern most of the properties of supramolecular systems, which is the reason determining the degree of ionization of macromolecules has become crucial for many applications. In this paper, we show that highresolution ultraviolet spectroscopy (VUV) can be used to determine the degree of ionization and its effect on the electronic excitation energies of layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)- benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). A full assignment of the VUV peaks of these polyelectrolytes in solution and in cast or LbL films could be made, with their pH dependence allowing us to determine the p'K IND. a' using the Henderson-Hasselbach equation. The p'K IND. a' for PAZO increased from ca. 6 in solution to ca. 7.3 in LbL films owing to the charge transfer from PAH. Significantly, even using solutions at a fixed pH for PAH, the amount adsorbed on the LbL films still varied with the pH of the PAZO solutions due to these molecular-level interactions. Therefore, the procedure based on a comparison of VUV spectra from solutions and films obtained under distinct conditions is useful to determine the degree of dissociation of macromolecules, in addition to permitting interrogation of interface effects in multilayer films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA block copolymer, a new class of hybrid material composed of a synthetic polymer and an oligodeoxynucleotide segment, owns unique properties which can not be achieved by only one of the two polymers. Among amphiphilic DNA block copolymers, DNA-b-polypropylene oxide (PPO) was chosen as a model system, because PPO is biocompatible and has a Tg < 0 °C. Both properties might be essential for future applications in living systems. During my PhD study, I focused on the properties and the structures of DNA-b-PPO molecules. First, DNA-b-PPO micelles were studied by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). In order to control the size of micelles without re-synthesis, micelles were incubated with template-independent DNA polymerase TdT and deoxynucleotide triphosphates in reaction buffer solution. By carrying out ex-situ experiments, the growth of micelles was visualized by imaging in liquid with AFM. Complementary measurements with FCS and polyacrylamide gel electrophoresis (PAGE) confirmed the increase in size. Furthermore, the growing process was studied with AFM in-situ at 37 °C. Hereby the growth of individual micelles could be observed. In contrast to ex-situ reactions, the growth of micelles adsorbed on mica surface for in-situ experiments terminated about one hour after the reaction was initiated. Two reasons were identified for the termination: (i) block of catalytic sites by interaction with the substrate and (ii) reduced exchange of molecules between micelles and the liquid environment. In addition, a geometrical model for AFM imaging was developed which allowed deriving the average number of mononucleotides added to DNA-b-PPO molecules in dependence on the enzymatic reaction time (chapter 3). Second, a prototype of a macroscopic DNA machine made of DNA-b-PPO was investigated. As DNA-b-PPO molecules were amphiphilic, they could form a monolayer at the air-water interface. Using a Langmuir film balance, the energy released owing to DNA hybridization was converted into macroscopic movements of the barriers in the Langmuir trough. A specially adapted Langmuir trough was build to exchange the subphase without changing the water level significantly. Upon exchanging the subphase with complementary DNA containing buffer solution, an increase of lateral pressure was observed which could be attributed to hybridization of single stranded DNA-b-PPO. The pressure versus area/molecule isotherms were recorded before and after hybridization. I also carried out a series of control experiments, in order to identify the best conditions of realizing a DNA machine with DNA-b-PPO. To relate the lateral pressure with molecular structures, Langmuir Blodgett (LB) films were transferred to highly ordered pyrolytic graphite (HOPG) and mica substrates at different pressures. These films were then investigated with AFM (chapter 4). At last, this thesis includes studies of DNA and DNA block copolymer assemblies with AFM, which were performed in cooperation with different group of the Sonderforschungsbereich 625 “From Single Molecules to Nanoscopically Structured Materials”. AFM was proven to be an important method to confirm the formation of multiblock copolymers and DNA networks (chapter 5).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluorescence correlation spectroscopy (FCS) is a powerful technique to determine the diffusion of fluorescence molecules in various environments. The technique is based on detecting and analyzing the fluctuation of fluorescence light emitted by fluorescence species diffusing through a small and fixed observation volume, formed by a laser focused into the sample. Because of its great potential and high versatility in addressing the diffusion and transport properties in complex systems, FCS has been successfully applied to a great variety of systems. In my thesis, I focused on the application of FCS to study the diffusion of fluorescence molecules in organic environments, especially in polymer melts. In order to examine our FCS setup and a developed measurement protocol, I first utilized FCS to measure tracer diffusion in polystyrene (PS) solutions, for which abundance data exist in the literature. I studied molecular and polymeric tracer diffusion in polystyrene solutions over a broad range of concentrations and different tracer and matrix molecular weights (Mw). Then FCS was further established to study tracer dynamics in polymer melts. In this part I investigated the diffusion of molecular tracers in linear flexible polymer melts [polydimethylsiloxane (PDMS), polyisoprene (PI)], a miscible polymer blend [PI and poly vinyl ethylene (PVE)], and star-shaped polymer [3-arm star polyisoprene (SPI)]. The effects of tracer sizes, polymer Mw, polymer types, and temperature on the diffusion coefficients of small tracers were discussed. The distinct topology of the host polymer, i.e. star polymer melt, revealed the notably different motion of the small tracer, as compared to its linear counterpart. Finally, I emphasized the advantage of the small observation volume which allowed FCS to investigate the tracer diffusions in heterogeneous systems; a swollen cross-linked PS bead and silica inverse opals, where high spatial resolution technique was required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasmonic nanoparticles are great candidates for sensing applications with optical read-out. Plasmon sensing is based on the interaction of the nanoparticle with electromagnetic waves where the particle scatters light at its resonance wavelength. This wavelength depends on several intrinsic factors like material, shape and size of the nanoparticle as well as extrinsic factors like the refractive index of the surrounding medium. The latter allows the nanoparticle to be used as a sensor; changes in the proximate environment can be directly monitored by the wavelength of the emitted light. Due to their minuscule size and high sensitivity this allows individual nanoparticles to report on changes in particle coverage.rnrnTo use this single particle plasmon sensor for future sensing applications it has to meet the demand for detection of incidents on the single molecule level, such as single molecule sensing or even the detection of conformational changes of a single molecule. Therefore, time resolution and sensitivity have to be enhanced as today’s measurement methods for signal read-out are too slow and not sensitive enough to resolve these processes. This thesis presents a new experimental setup, the 'Plasmon Fluctuation Setup', that leads to tremendous improvements in time resolution and sensitivity. This is achieved by implementation of a stronger light source and a more sensitive detector. The new setup has a time resolution in the microsecond regime, an advancement of 4-6 orders of magnitude to previous setups. Its resonance wavelength stability of 0.03 nm, measured with an exposure time of 10 ms, is an improvement of a factor of 20 even though the exposure time is 3000 times shorter than in previous reports. Thus, previously unresolvable wavelength changes of the plasmon sensor induced by minor local environmental alteration can be monitored with extremely high temporal resolution.rnrnUsing the 'Plasmon Fluctuation Setup', I can resolve adsorption events of single unlabeled proteins on an individual nanorod. Additionally, I monitored the dynamic evolution of a single protein binding event on a millisecond time scale. This feasibility is of high interest as the role of certain domains in the protein can be probed by a study of modified analytes without the need for labels possibly introducing conformational or characteristic changes to the target. The technique also resolves equilibrium fluctuations in the coverage, opening a window into observing Brownian dynamics of unlabeled macromolecules. rnrnA further topic addressed in this thesis is the usability of the nanoruler, two nanospheres connected with a spacer molecule, as a stiffness sensor for the interparticle linker under strong illumination. Here, I discover a light induced collapse of the nanoruler. Furthermore, I exploit the sensing volume of a fixed nanorod to study unlabeled analytes diffusing around the nanorod at concentrations that are too high for fluorescence correlation spectroscopy but realistic for biological systems. Additionally, local pH sensing with nanoparticles is achieved.