995 resultados para finite groups
Resumo:
Splittings of a free group correspond to embedded spheres in the 3-manifold M = # (k) S (2) x S (1). These can be represented in a normal form due to Hatcher. In this paper, we determine the normal form in terms of crossings of partitions of ends corresponding to normal spheres, using a graph of trees representation for normal forms. In particular, we give a constructive proof of a criterion determining when a conjugacy class in pi (2)(M) can be represented by an embedded sphere.
Resumo:
This report contains the details of the development of the stiffness matrix for a rectangular laminated anisotropic shallow thin shell finite element. The derivation is done under linear thin shell assumptions. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first-order Hermite interpolation polynomials, it is possible to insure that the displacement state for the assembled set of such elements, to be geometrically admissible. Monotonic convergence of the total potential energy is therefore possible as the modelling is successively refined. The element is systematically evaluated for its performance considering various examples for which analytical or other solutions are available
Resumo:
The method of least squares could be used to refine an imperfectly related trial structure by adoption of one of the following two procedures: (i) using all the observed at one time or (ii) successive refinement in stages with data of increasing resolution. While the former procedure is successful in the case of trial structures which are sufficiently accurate, only the latter has been found to be successful when the mean positional error (i.e.<|[Delta]r|>) for the atoms in the trial structure is large. This paper makes a theoretical study of the variation of the R index, mean phase-angle error, etc. as a function of <|[Delta]r|> for data corresponding to different esolutions in order to find the best refinement procedure [i.e. (i) or (ii)] which could be successfully employed for refining trial structures in which <|[Delta]r|> has large, medium and low values. It is found that a trial structure for which the mean positional error is large could be refined only by the method of successive refinement with data of increasing resolution.
Resumo:
We study charge pumping when a combination of static potentials and potentials oscillating with a time period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides which are at the same chemical potential and temperature. We consider a model in which oscillating potentials help the electrons to access a transmission resonance produced by the static potentials and show that nonadiabatic pumping violates the simple sin phi rule which is obeyed by adiabatic two-site pumping. For the ring, we do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite time using the time evolution operator U(T) assuming a purely Hamiltonian evolution. We analytically show that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies indicate another interesting result, namely, that the integrated current is zero for any time dependence of the potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at resonant and nonresonant frequencies, and show that the pumped current has different dependences on the pumping amplitude in the two cases.
Resumo:
A finite-field method for calculating exact polarizabilities of correlated conjugated model systems within the valence bond (VB) framework is presented. The correlations reduce the polarizabilities from their noninteracting values and extend the range of linearity to higher external fields. The large nonlinear polarizabilities observed in strongly correlated conjugated organic molecules cannot be directly attributed to electron correlations. The method described can be employed to calculate static polarizabilities for any desired state of a correlated system.
Resumo:
The in situ cryo-crystallization study of benzyl derivatives reveals that the molecular packing in these compounds is either through methylene (sp(3)) C-H center dot center dot center dot pi or aromatic (sp(2)) C-H center dot center dot center dot pi interactions depending on the level of acidity of the benzyl proton. These studies of low melting compounds bring out the subtle features of such weak interactions and point to the directional preferences depending on the nature (electron withdrawing, polarizability) of the neighbouring functional group.
Resumo:
A numerical integration procedure for rotational motion using a rotation vector parametrization is explored from an engineering perspective by using rudimentary vector analysis. The incremental rotation vector, angular velocity and acceleration correspond to different tangent spaces of the rotation manifold at different times and have a non-vectorial character. We rewrite the equation of motion in terms of vectors lying in the same tangent space, facilitating vector space operations consistent with the underlying geometric structure. While any integration algorithm (that works within a vector space setting) may be used, we presently employ a family of explicit Runge-Kutta algorithms to solve this equation. While this work is primarily motivated out of a need for highly accurate numerical solutions of dissipative rotational systems of engineering interest, we also compare the numerical performance of the present scheme with some of the invariant preserving schemes, namely ALGO-C1, STW, LIEMIDEA] and SUBCYC-M. Numerical results show better local accuracy via the present approach vis-a-vis the preserving algorithms. It is also noted that the preserving algorithms do not simultaneously preserve all constants of motion. We incorporate adaptive time-stepping within the present scheme and this in turn enables still higher accuracy and a `near preservation' of constants of motion over significantly longer intervals. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Modern sample surveys started to spread after statistician at the U.S. Bureau of the Census in the 1940s had developed a sampling design for the Current Population Survey (CPS). A significant factor was also that digital computers became available for statisticians. In the beginning of 1950s, the theory was documented in textbooks on survey sampling. This thesis is about the development of the statistical inference for sample surveys. For the first time the idea of statistical inference was enunciated by a French scientist, P. S. Laplace. In 1781, he published a plan for a partial investigation in which he determined the sample size needed to reach the desired accuracy in estimation. The plan was based on Laplace s Principle of Inverse Probability and on his derivation of the Central Limit Theorem. They were published in a memoir in 1774 which is one of the origins of statistical inference. Laplace s inference model was based on Bernoulli trials and binominal probabilities. He assumed that populations were changing constantly. It was depicted by assuming a priori distributions for parameters. Laplace s inference model dominated statistical thinking for a century. Sample selection in Laplace s investigations was purposive. In 1894 in the International Statistical Institute meeting, Norwegian Anders Kiaer presented the idea of the Representative Method to draw samples. Its idea was that the sample would be a miniature of the population. It is still prevailing. The virtues of random sampling were known but practical problems of sample selection and data collection hindered its use. Arhtur Bowley realized the potentials of Kiaer s method and in the beginning of the 20th century carried out several surveys in the UK. He also developed the theory of statistical inference for finite populations. It was based on Laplace s inference model. R. A. Fisher contributions in the 1920 s constitute a watershed in the statistical science He revolutionized the theory of statistics. In addition, he introduced a new statistical inference model which is still the prevailing paradigm. The essential idea is to draw repeatedly samples from the same population and the assumption that population parameters are constants. Fisher s theory did not include a priori probabilities. Jerzy Neyman adopted Fisher s inference model and applied it to finite populations with the difference that Neyman s inference model does not include any assumptions of the distributions of the study variables. Applying Fisher s fiducial argument he developed the theory for confidence intervals. Neyman s last contribution to survey sampling presented a theory for double sampling. This gave the central idea for statisticians at the U.S. Census Bureau to develop the complex survey design for the CPS. Important criterion was to have a method in which the costs of data collection were acceptable, and which provided approximately equal interviewer workloads, besides sufficient accuracy in estimation.
Resumo:
Copper strips of 2.5 mm thickness resting on stainless steel anvils were normally indented by wedges under nominal plane strain conditions. Inflections in the hardness-penetration characteristics were identified. Inflections separate stages where each stage has typical mechanics of deformation. These are arrived at by studying the distortion of 0.125 mm spaced grids inscribed on the deformation plane of the strip. The sensitivity of hardness and deformation mechanics to wedge angle and the interfacial friction between strip and anvil were investigated within the framework of existing slip line field models of indentation of semi-infinite and finite blocks.
Resumo:
The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials There is thus a case for combining these advantages in a so-called hybrid scheme or a `smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform C-p (p >= 1) continuity One such recent attempt, a NURBS based parametric bridging method (Shaw et al 2008b), uses polynomial reproducing, tensor-product non-uniform rational B-splines (NURBS) over a typical FE mesh and relies upon a (possibly piecewise) bijective geometric map between the physical domain and a rectangular (cuboidal) parametric domain The present work aims at a significant extension and improvement of this concept by replacing NURBS with DMS-splines (say, of degree n > 0) that are defined over triangles and provide Cn-1 continuity across the triangle edges This relieves the need for a geometric map that could precipitate ill-conditioning of the discretized equations Delaunay triangulation is used to discretize the physical domain and shape functions are constructed via the polynomial reproduction condition, which quite remarkably relieves the solution of its sensitive dependence on the selected knotsets Derivatives of shape functions are also constructed based on the principle of reproduction of derivatives of polynomials (Shaw and Roy 2008a) Within the present scheme, the triangles also serve as background integration cells in weak formulations thereby overcoming non-conformability issues Numerical examples involving the evaluation of derivatives of targeted functions up to the fourth order and applications of the method to a few boundary value problems of general interest in solid mechanics over (non-simply connected) bounded domains in 2D are presented towards the end of the paper
Resumo:
We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations