935 resultados para fiber processing
Resumo:
[EN] In this study, we explore native and non-native syntactic processing, paying special attention to the language distance factor. To this end, we compared how native speakers of Basque and highly proficient non-native speakers of Basque who are native speakers of Spanish process certain core aspects of Basque syntax. Our results suggest that differences in native versus non-native language processing strongly correlate with language distance: native/non-native processing differences obtain if a syntactic parameter of the non-native grammar diverges from the native grammar. Otherwise, non-native processing will approximate native processing as levels of proficiency increase. We focus on three syntactic parameters: (i) the head parameter, (ii) argument alignment (ergative/accusative), and (iii) verb agreement. The first two diverge in Basque and Spanish, but the third is the same in both languages. Our results reveal that native and non-native processing differs for the diverging syntactic parameters, but not for the convergent one. These findings indicate that language distance has a significant impact in non-native language processing.
Resumo:
The present corpus study aimed to examine whether Basque (OV) resorts more often than Spanish (VO) to certain grammatical operations, in order to minimi ze the number of arguments to be processed before the verb. Ueno & Polinsky (2009) argue that VO/OV languages use certain grammatical resources with different frequencies in order to facilitate real-time processing. They observe that both OV and VO languages in their sample (Japanese, Turkish and Spanish) have a similar frequency of use of subject pro-drop; however, they find that OV languages (Japanese, Turkish) use more intransitive sentences than VO languages (English, Spanish), and conclude this is an OV-specific strategy to facilitate processing. We conducted a comparative corpus study of Spanish (VO) and Basque (OV). Results show (a) that the fre- quency of use of subject pro-drop is higher in Basque than in Spanish; and (b) Basque does not use more intransitive sentences than Spanish; both languages have a similar frequency of intransitive sentences. Based on these findings, we conclude that the frequency of use of grammatical resources to facilitate the processing does not depend on a single typological trait (VO/OV) but it is modulated by the concurrence of other grammatical feature.
Resumo:
Singular Value Decomposition (SVD) is a key linear algebraic operation in many scientific and engineering applications. In particular, many computational intelligence systems rely on machine learning methods involving high dimensionality datasets that have to be fast processed for real-time adaptability. In this paper we describe a practical FPGA (Field Programmable Gate Array) implementation of a SVD processor for accelerating the solution of large LSE problems. The design approach has been comprehensive, from the algorithmic refinement to the numerical analysis to the customization for an efficient hardware realization. The processing scheme rests on an adaptive vector rotation evaluator for error regularization that enhances convergence speed with no penalty on the solution accuracy. The proposed architecture, which follows a data transfer scheme, is scalable and based on the interconnection of simple rotations units, which allows for a trade-off between occupied area and processing acceleration in the final implementation. This permits the SVD processor to be implemented both on low-cost and highend FPGAs, according to the final application requirements.
Resumo:
Most of the fish marketed throughout Nigeria are in either smoked or dried form. The technological requirement for other forms of preservation like chilling and freezing cannot be afforded by the small scale fisher folk. Considerable quantities of fish processed for distant consumer markets are lost at handling, processing, storage and marketing stages. Significant losses occur through infestation by mites, insects, fungal infestation and fragmentation during transportation. This paper attempts to describe the effect of these losses on fish quality and suggests methods of protecting fish from agents of deterioration
Resumo:
Este Proyecto de Fin de Carrera ha sido realizado en colaboración con la empresa Ultra-Lab y el centro Arteleku y trata sobre el diseño, desarrollo e implementación de una interfaz visual para la creación, manipulación, transformación y visualización de diferentes figuras en un entorno 3D. Estas herramientas visuales dan soporte al usuario para que este pueda realizar múltiples modificaciones de las figuras con las que está trabajando de una forma fácil, intuitiva y eficiente.
Resumo:
The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad gamma/Cr7C3/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr3C2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A theoretical investigation on the nonlinear pulse propagation and dispersive wave generation in the anomalous dispersion region of a microstructured fiber is presented. By simulating the dispersive wave generation under different conditions. it is found that the generation mechanism of the dispersive wave is mainly due to the pulse trapping across the zero-dispersion wavelength. By varying the initial pulse chirp, the output spectrum can be broadened and the intensity of the dispersive wave can be obviously enhanced. In particular, there exists an optimal positive chirp which maximizes the intensity of the dispersive wave. This effect can be explained by the energy transfer from the Raman soliton to the dispersive wave due to the effect of the pulse trapping and the effect of the higher-order dispersion. From the phase aspect, the explanation of this effect is also included. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.
We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.
We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.
We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.
Resumo:
This thesis introduces fundamental equations and numerical methods for manipulating surfaces in three dimensions via conformal transformations. Conformal transformations are valuable in applications because they naturally preserve the integrity of geometric data. To date, however, there has been no clearly stated and consistent theory of conformal transformations that can be used to develop general-purpose geometry processing algorithms: previous methods for computing conformal maps have been restricted to the flat two-dimensional plane, or other spaces of constant curvature. In contrast, our formulation can be used to produce---for the first time---general surface deformations that are perfectly conformal in the limit of refinement. It is for this reason that we commandeer the title Conformal Geometry Processing.
The main contribution of this thesis is analysis and discretization of a certain time-independent Dirac equation, which plays a central role in our theory. Given an immersed surface, we wish to construct new immersions that (i) induce a conformally equivalent metric and (ii) exhibit a prescribed change in extrinsic curvature. Curvature determines the potential in the Dirac equation; the solution of this equation determines the geometry of the new surface. We derive the precise conditions under which curvature is allowed to evolve, and develop efficient numerical algorithms for solving the Dirac equation on triangulated surfaces.
From a practical perspective, this theory has a variety of benefits: conformal maps are desirable in geometry processing because they do not exhibit shear, and therefore preserve textures as well as the quality of the mesh itself. Our discretization yields a sparse linear system that is simple to build and can be used to efficiently edit surfaces by manipulating curvature and boundary data, as demonstrated via several mesh processing applications. We also present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces.
Resumo:
(PDF contains 57 pages)
Resumo:
Commercially available software packages for IBM PC-compatibles are evaluated to use for data acquisition and processing work. Moss Landing Marine Laboratories (MLML) acquired computers since 1978 to use on shipboard data acquisition (Le. CTD, radiometric, etc.) and data processing. First Hewlett-Packard desktops were used then a transition to the DEC VAXstations, with software developed mostly by the author and others at MLML (Broenkow and Reaves, 1993; Feinholz and Broenkow, 1993; Broenkow et al, 1993). IBM PC were at first very slow and limited in available software, so they were not used in the early days. Improved technology such as higher speed microprocessors and a wide range of commercially available software made use of PC more reasonable today. MLML is making a transition towards using the PC for data acquisition and processing. Advantages are portability and available outside support.