998 resultados para failure wave
Resumo:
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does sx, by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.
Resumo:
Stress fields and failure mechanisms have been investigated in composites with particles either surface treated or untreated under uniaxial tension. Previous experimental observation of failure mechanisms in a composite with untreated particles showed that tensile cracks occurred mostly at the polar region of the particle and grew into interfacial debonding. In a composite with surface-treated particles, however, shear yielding and shear cracking proceeded along the interphase-matrix interface at the polar area of the matrix and thus may improve the mechanical behaviour of the material. The finite element calculations showed that octahedral shear stress at the polar and longitudinal areas of the particle treated by coupling agents is much larger than that of materials with untreated particles, and the shear stress distribution around the interface is sensitive to the interphase property. The results suggest that a th ree-phase model can describe the composites with surface-treated fillers.
Resumo:
The concept ''sample-specific'' is suggested to describe the behavior of disordered media close to macroscopic failure. it is pointed out that the transition from universal scaling to sample-specific behavior may be a common phenomenon in failure models of disordered media. The dynamical evolution plays an important role in the transition.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
In this paper, a dynamic damage model in ductile solids under the application of a dynamic mean tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage process under intense dynamic loading (strain rates epsilon greater than or equal to 10(3) s(-1)). The evolution equation of the ductile void has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process in LY12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair agreement between computed and experimental results is obtained. Numerical analysis shows that the influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates.
Resumo:
The influence of two secondary effects, rotatory inertia and presence of a crack, on the dynamic plastic shear failure of a cantilever with an attached mass block at its tip subjected to impulsive loading is investigated. It is illustrated that the consideration of the rotatory inertia of the cantilever and the presence of a crack at the upper root of the beam both increase the initial kinetic energy of the block required to cause shear failure at the interface between the beam tip and the tip mass, where the initial velocity has discontinuity Therefore, the influence of these two secondary effects on the dynamic shear failure is not negligible.
Resumo:
Burgers suggested that the main properties of free-turbulence in the boundless area without basic flow might be understood with the aid of the following equation, which was much simpler than those of fluid dynamics,
Resumo:
In this paper, a mathematical model of dynamic fracture in porous ductile materials under intense dynamic general loading is developed. The mathematical model includes the influence of inertial effects and material rate sensitivity, as well as the contribution of surface energy of a void and material work-hardening. In addition, the condition of the void compaction is considered as well. The threshold stresses for the void growth and compaction are obtained. A simple criterion for ductile fracture which is associated with material distention and plastic deformation is adopted. As an application of the theoretical model, the processes of two-dimensional spallation in LY12 aluminum alloy are successfully simulated by means of two-dimensional finite-difference Lagrangian code.
Resumo:
Keller proposed that a building, a mechanical installation or a body wrapped bya layer of foam plastics may be an efficient means for protection from damage ofblast wave. However, the practical effect was beyond expectation. For example, agunner wearing the foam plastics-padded waistcoat was injured more seriously by theblast wave from a muzzle. Monti took the foam plastics as homogeneous two-phasemedium and analyzed it with the theory of dusty flow. The obtained results showthat the peak pressure behind the reflected shock wave from rigid wall with foamcoat exceeds obviously that without foam coat under the same condition. Gel'fand,Patz and Weaver made experimental observations by means of shock tubes and veri-
Resumo:
The three-dimensional transient wave response problem is presented for an infinite elastic medium weakened by a plane crack of infinite length and finite width. Tractions are applied suddenly to the crack, which simulates the case of impact loading. The integral transforms are utilized to reduce the problem to a standard Fredholm integral equation in the Laplace transform variable and sequentially invert the Laplace transforms of the stress components by numerical inversion method. The dynamic mode I stress intensity factors at the crack tip are obtained and some numerical results are presented in graphical form.
Resumo:
In this paper, a damage function defined by the residual strength of spalled specimens of an aluminium alloy is given to characterize the spallation of the material. Based on this function a simple method for continuously describing the spallation may be developed. Stress wave profiles showing the signal of spallation were successfully obtained with carbon gauges. Microscopic observations of the spalled aluminium alloy specimens reveal that the nucleation of spallation initiates from cracking of the second phase particles. Spallation is a process of crack nucleation, growth and coalescence to final, complete disintegration.
Resumo:
A regular perturbation technique is suggested to deal with the problem of one dimensional stress wave propagation in viscoelastic media with damage. Based upon the first order asymptotic solution obtained, the characteristics of wave attenuation are studied. In fact, there exist three different time-dependent phenomena featuring the dynamic response of the materials, the first expressing the characteristics of wave propagation, the second indicating the innate effect of visco-elastic matrix and the third coming from the time dependent damage. The comparision of first order asymptotic solution with the numerical results calculated by a finite difference procedure shows that the perturbation expansion technique may offer a useful approach to the problem concerned.
Resumo:
A method for optimizing tried wave functions in quantum Monte Carlo method has been found and used to calculate the energies of molecules, such as H-2, Li-2, H-3+, H-3 and H-4. Good results were obtained.