936 resultados para facility logistics
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.
Resumo:
View of shared carport facility.
Resumo:
Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.
Resumo:
Expansion tubes are impulse facilities capable of generating highly energetic hyper-sonic flows. This work surveys a broad range of flow conditions produced in the facility X1 with carbon dioxide test gas, for simulation of spacecraft entry into the Martian atmosphere. Conditions with nominal flow speeds of 7, 9, 11 and 13 km/s were tested. The freestream conditions were calibrated using static/Pitot pressure measurements and advanced optical diagnostics. An extensive set of holographic interferometry experiments was performed on flows over wedges for quantitative study of freestream and post-shock densities, and post-shock ionisation. A one-dimensional code with frozen and equilibrium chemistry capabilities was used to estimate the freestream conditions. An equilibrium chemistry model produced a good match to measured freestream quantities at the high enthalpy conditions which are a major aim of this facility's operation. The freestream in the lower enthalpy conditions was found to be heavily influenced by chemical non-equilibrium. Non-equilibrium in the final unsteady expansion process of flow generation was accounted for by switching from equilibrium to frozen chemistry at a predetermined point. Comparison between the freestream density results of holographic interferometry, pressure measurements and computations shows good agreement.
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
In high-velocity free-surface flows, air is continuously being trapped and released through the free-surface. Such high-velocity highly-aerated flows cannot be studied numerically because of the large number of relevant equations and parameters. Herein an advanced signal processing of traditional single- and dual-tip conductivity probes provides some new information on the air-water turbulent time and length scales. The technique is applied to turbulent open channel flows in a large-size facility. The auto- and cross-correlation analyses yield some characterisation of the large eddies advecting the bubbles. The transverse integral turbulent length and time scales are related to the step height: i.e., Lxy/h ~ 0.02 to 0.2, and T.sqrt(g/h) ~ 0.004 to 0.04. The results are irrespective of the Reynolds numbers. The present findings emphasise that turbulent dissipation by large-scale vortices is a significant process in the intermediate zone between the spray and bubbly flow regions (0.3 < C < 0.7). Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. The results are significant because they provide a picture general enough to be used to characterise the air-water flow field in prototype spillways.
Resumo:
Free-piston-driven expansion tubes are capable of generating flaw conditions over a wide range of enthalpies ranging from orbital up to superorbital velocities. Initial optical measurements aimed at investigating the flow in such a facility are presented. Emission studies were used to identify impurities in the how and to investigate spectral regions that are accessible by optical techniques. At moderate enthalpies, it was found that significant radiation resulted from metallic contaminants. At high enthalpies, the spectrum consisted of a number of atomic lines together with a broadband background component indicative of the presence of electrons. The presence of this radiation may limit the applicability of optical techniques that require spectral regions free from the influence of atomic transitions or background radiation. Emission spectroscopy (through Stark broadened hydrogen lines) and two-wavelength holographic interferometry were used to measure the electron number density behind a bow shock on a blunt body at conditions where significant ionization was observed. They yielded average concentrations of (3 +/- 1) x 10(17) cm(-3) from the emission measurements and (3.8 +/- 0.6) x 10(17) cm(-3) from the interferometry.
Long-term clozapine treatment identifies significant improvements in clinical and functioning scales
Resumo:
The majority of clinical drug trials only cover a small number of variables over a short period of time on a small group of people. The objective of this study was to track a large group of people over a long period of time, using a diverse range of variables with a naturalistic design to assess the ‘real world’ use of clozapine. Fifty-three people with treatment-resistant schizophrenia were recruited into a 2-year study which assessed the subjects using the following scales: Positive and Negative Syndrome Scale (PANSS), Clinical Global Impression Scale (CGI), Life Skills Profile (LSP), and Role Functioning Scale (RFS). Discharge, leave, and ward movement rates were also monitored. All subjects were inpatients at a tertiary psychiatric facility. Thirty-three percent of the group was discharged. Seventythree percent moved to less cost-intensive wards, and the leave rate increased by 105”/0. Sixty-seven percent of the study group were identified as responders by the 24-month time point. Twenty-four percent of the group had their CGI scores reduced to 2 or better 0, =O.OOOl). Significant improvements were identified in the RFS (p = 0.02) and LSP (p = 0.0001). Long-term clozapine treatment has identified a significant group of responders on a variety of measures.
Resumo:
The Fornax Spectroscopic Survey will use the Two degree Field spectrograph (2dF) of the Angle-Australian Telescope to obtain spectra for a complete sample of all 14000 objects with 16.5 less than or equal to b(j) less than or equal to 19.7 in a 12 square degree area centred on the Fornax Cluster. The aims of this project include the study of dwarf galaxies in the cluster (both known low surface brightness objects and putative normal surface brightness dwarfs) and a comparison sample of background field galaxies. We will also measure quasars and other active galaxies, any previously unrecognised compact galaxies and a large sample of Galactic stars. By selecting all objects-both stars and galaxies-independent of morphology, we cover a much larger range of surface brightness and scale size than previous surveys. In this paper we first describe the design of the survey. Our targets are selected from UK Schmidt Telescope sky survey plates digitised by the Automated Plate Measuring (APM) facility. We then describe the photometric and astrometric calibration of these data and show that the APM astrometry is accurate enough for use with the 2dF. We also describe a general approach to object identification using cross-correlations which allows us to identify and classify both stellar and galaxy spectra. We present results from the first 2dF field. Redshift distributions and velocity structures are shown for all observed objects in the direction of Fornax, including Galactic stars? galaxies in and around the Fornax Cluster, and for the background galaxy population. The velocity data for the stars show the contributions from the different Galactic components, plus a small tail to high velocities. We find no galaxies in the foreground to the cluster in our 2dF field. The Fornax Cluster is clearly defined kinematically. The mean velocity from the 26 cluster members having reliable redshifts is 1560 +/- 80 km s(-1). They show a velocity dispersion of 380 +/- 50 km s(-1). Large-scale structure can be traced behind the cluster to a redshift beyond z = 0.3. Background compact galaxies and low surface brightness galaxies are found to follow the general galaxy distribution.
Resumo:
Background, Regular physical activity in older adults can facilitate healthy aging, improve functional capacity, and prevent disease. However, factors associated with physical inactivity in older populations are poorly understood. This study attempts to identify social-cognitive and perceived environmental influences associated with physical activity participation in older populations. Methods. In a randomly selected sample of 449 Australian adults age 60 and older, we assessed self-reported physical activity and a range of social-cognitive and perceived environmental factors. Respondents were classified as sufficiently active and inactive based on energy expenditure estimates (kcal/week) derived from self-reported physical activity. Two logistic regression models, with and without self-efficacy included, were conducted to identify modifiable independent predictors of physical activity. Results. Significantly more males than females were physically active. Physical activity participation was related to age with a greater proportion of those age 65-69 being active than those age 60-64 or 70 or older. High self-efficacy, regular participation of friends and family, finding footpaths safe for walking, and access to local facilities were significantly associated with being active. Conclusion. Identifying predictors of physical activity in older populations, particularly social support, facility access, and neighbourhood safety, can inform the development of policy and intervention strategies to promote the health of older people. (C) 2000 American Health Foundation and Academic Press.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The acquisition of HI Parkes All Shy Survey (HIPASS) southern sky data commenced at the Australia Telescope National Facility's Parkes 64-m telescope in 1997 February, and was completed in 2000 March. HIPASS is the deepest HI survey yet of the sky south of declination +2 degrees, and is sensitive to emission out to 170 h(75)(-1) Mpc. The characteristic root mean square noise in the survey images is 13.3 mJy. This paper describes the survey observations, which comprise 23 020 eight-degree scans of 9-min duration, and details the techniques used to calibrate and image the data. The processing algorithms are successfully designed to be statistically robust to the presence of interference signals, and are particular to imaging point (or nearly point) sources. Specifically, a major improvement in image quality is obtained by designing a median-gridding algorithm which uses the median estimator in place of the mean estimator.
Resumo:
With the advent of multi-fibre spectrographs such as the 'Two-Degree Field' (2dF) instrument at the Angle-Australian Telescope, quasar surveys that are free of any preselection of candidates and any biases this implies have become possible for the first time. The first of these is that which is being undertaken as part of the Fornax Spectroscopic Survey, a survey of the area around the Fornax Cluster of galaxies, and aims to obtain the spectra of all objects in the magnitude range 16.5 < b(j) < 19.7. To date, 3679 objects in the central pi -deg(2) area have been successfully identified from their spectral characteristics. Of these, 71 are found to be quasars, 61 with redshifts 0.3 < z < 2.2 and 10 with redshifts z > 2.2. Using this complete quasar sample, a new determination of quasar number counts is made, enabling an independent check of existing quasars surveys. Cumulative counts per square degree at a magnitude limit of b(j) < 19.5 are found to be 11.5 +/- 2.2 for 0.3 < z < 2.2, 2.22 +/- 0.93 for z > 2.2 and 13.7 +/- 3.1 for z > 0.3. Given the likely detection of extra quasars in the Fornax survey, we make a more detailed examination of existing quasar selection techniques. First, looking at the use of a stellar criterion, four of the 71 quasars are 'non-stellar' on the basis of the automated plate measuring facility (APM) b(j) classification, however inspection shows all are consistent with stellar, but misclassified due to image confusion. Examining the ultraviolet excess and multicolour selection techniques, for the selection criteria investigated, ultraviolet excess would find 69 +/- 6 per cent of our 0.3 < z < 2.2 quasars and only 50(-18)(+14), per cent of our z > 2.2 quasars, while the completeness level for multicolour selection is found to be 90(-4)(+3) per cent for 0.3 < z < 2.2 quasars and 80(-12)(+14) per cent for z > 2.2 quasars. The extra quasars detected by our all-object survey thus have unusually red star-like colours, and this appears to be a result of the continuum shape rather than any emission features. An intrinsic dust extinction model may, at least partly, account for the red colours.
Resumo:
The first 'Australian Cluster Workshop' was held at the Australia Telescope National Facility in Sydney on 2001 February 6. The aim of the workshop was to bring together the many and varied groups working on clusters of galaxies in Australia, to forge newmulti-disciplinary links, and to generate enthusiasm and support for new cluster work and further cluster meetings in Australia. In this paper I present a summary of the workshop as well as some additional review material intended to place current Australian research in a broader perspective, looking ahead to the major issues still to be addressed.
Resumo:
Home care is the preferred option for most people with a terminal illness. Providing home care relies on good community-based services, and a general practice workforce competent in palliative care practice and willing to accommodate patients' needs. Structured palliative care training of general practitioners is needed at undergraduate and postgraduate level, with attention to barriers to teamwork and communication. Good palliative care-can be delivered to patients at home by GPs (supported by specialist palliative care teams) and community nurses, with access to an inpatient facility when required. To optimise patient care, careful planning and good communication between all members of the healthcare team is crucial.