900 resultados para excess post-exercise oxygen consumption
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the last two decades, the metabolic syndrome is in focus of many health agencies worldwide. Understanding among the most important glucose intolerance and insulin resistance, other disorders have been framed in this category. The non-alcoholic hepatic steatosis appears to be one of the components of this syndrome. Several studies point to the increased consumption of fructose linked to the onset of sedentary steatohepatitis. From that premise, this review aimed to the search for studies that suggest the role of exercise as an important weapon in the treatment and prevention of non-alcoholic hepatic steatosis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not P-CO2, during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol 1(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial P-CO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial P-CO2. The increased arterial P-CO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial P-CO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than P-CO2 normally affects chemoreceptor activity and ventilatory drive.
Resumo:
The tegus increase in body mass after hatching until early autumn, when the energy intake becomes gradually reduced. Resting rates of oxygen consumption in winter drop to 20% of the values in the active season (Vo(2)=0.0636 ml g(-1) h(-1)) and are nearly temperature insensitive over the range of 17-25degreesC (Q(10)=1.55). During dormancy, plasma glucose levels are 60% lower than those in active animals, while total protein, total lipids and beta-hydroxybutyrate are elevated by 24%, 43% and 113%, respectively. In addition, a significant depletion of liver carbohydrate (50%) and of fat deposited in the visceral fat bodies (24%) and in the tail (25%) and a slight loss of skeletal muscle protein (14%) were measured halfway through the inactive period. Otherwise, glycogen content is increased 4-fold in the brain and 2.3-fold in the heart of dormant lizards, declining by the onset of arousal. During early arousal, the young tegus are still anorexic, although Vo(2) is significantly greater than winter rates. The fat deposits analysed are further reduced (62% and 45%, respectively) and there is a large decrease in tail muscle protein (50%) together with a significant increase in glycogen (2-3-fold) and an increase in plasma glucose (40%), which suggests a role for gluconeogenesis as a supplementary energy source in arousing animals. No change is detectable in citrate synthase activity, but beta-hydroxyacyl CoA dehydrogenase activities are strongly affected by season, reaching a Mold and 5-fold increase in the liver tissue of winter and arousing animals, respectively, and becoming reduced by half in skeletal muscle and heart of winter animals compared with late fall or spring active individuals. From hatching to late autumn, the increase of the fat body mass relatively to body mass is disproportionate (b=1.44), and the mass exponent changes significantly to close to 1.0 during the fasting period. The concomitant shift in the Vo(2) mass exponent in early autumn (b=0.75) to values significantly greater than 1.0 in late autumn and during winter dormancy indicates an allometric effect on the degree of metabolic depression related to the size of the fat stores and suggests greater energy conservation in the smaller young.
Resumo:
Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.
Resumo:
This study examined how the standard metabolic rate of tegu lizards, a species that undergoes large ontogenetic changes in body weight with associated changes in life-history traits, is affected by changes in body mass, body temperature, season, and life-history traits. We measured rates of oxygen consumption ((V) over dot o(2)) in 90 individuals ranging in body mass from 10.4. g to 3.75 kg at three experimental temperatures ( 17 degrees, 25 degrees, and 30 degrees C) over the four seasons. We found that standard metabolic rate scaled to the power of 0.84 of body mass at all experimental temperatures in all seasons and that thermal sensitivity of metabolism was relatively low (Q(10) approximate to 2.0-2.5) over the range from 17 degrees to 30 degrees C regardless of body size or season. Metabolic rates did vary seasonally, being higher in spring and summer than in autumn and winter at the same temperatures, and this was true regardless of animal size. Finally, in this study, the changes in life-history traits that occurred ontogenetically were not accompanied by significant changes in metabolic rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Esta revisão teve por objetivo destacar os principais achados publicados nos últimos dez anos sobre os efeitos da respiração frenolabial (RFL) em pacientes com doença pulmonar obstrutiva crônica (DPOC). A busca dos artigos foi realizada nas bases de dados Lilacs, IBECS, MEDLINE e SciELO, por meio dos seguintes descritores da área da saúde (DeCS): doença pulmonar obstrutiva crônica, reabilitação, respiração, hiperinsuflação e dispneia, e suas respectivas versões na língua inglesa (MeSH), além do termo pursed-lip breathing. Após a eliminação dos títulos repetidos, foram selecionados somente os estudos que abordavam a RFL como tema principal, resultando em 12 artigos científicos, 10 ensaios clínicos e 2 revisões bibliográficas. Segundo os achados, a RFL proporciona: alterações sobre a gasometria arterial, caracterizada pelo aumento da saturação e pressão parcial de oxigênio; padrão ventilatório, com diminuição da frequência respiratória e aumento de tempo expiratório e do volume corrente; mecânica ventilatória, por meio do recrutamento de musculatura abdominal expiratória e dos músculos da caixa torácica e acessórios da inspiração; diminuição no consumo de oxigênio; alterações na modulação autonômica cardíaca induzida pelo aumento da atividade parassimpática e, por fim, melhora na qualidade de vida destes pacientes. A RFL é considerada uma manobra de grande importância, por repercutir de forma positiva em diversos sistemas e sobre a qualidade de vida de pacientes portadores da DPOC.
Resumo:
To evaluate the effects of acepromazine maleate on the cardiovascular changes induced by dopamine in isoflurane-anesthetized dogs.Prospective, randomized cross-over experimental design.Six healthy adult spayed female dogs weighing 16.4 +/- 3.5 kg (mean +/- SD).Each dog received two treatments, at least 1 week apart. Acepromazine (0.03 mg kg(-1), IV) was administered 15 minutes before anesthesia was induced with propofol (7 mg kg(-1), IV) and maintained with isoflurane (1.8% end-tidal). Acepromazine was not administered in the control treatment. Baseline cardiopulmonary parameters were measured 90 minutes after induction. Thereafter, dopamine was administered intravenously at 5, 10, and 15 mu g kg(-1) minute(-1), with each infusion rate lasting 30 minutes. Cardiopulmonary data were obtained at the end of each infusion rate.Dopamine induced dose-related increases in cardiac index (CI), stroke index, arterial blood pressure, mean pulmonary arterial pressure, oxygen delivery index (DO2I) and oxygen consumption index. In the control treatment, systemic vascular resistance index (SVRI) decreased during administration of 5 and 10 mu g kg(-1) minute(-1) of dopamine and returned to baseline with the highest dose (15 mu g kg (-1) minute(-1)). After acepromazine treatment, SVRI decreased from baseline during dopamine administration, regardless of the infusion rate, and this resulted in a smaller increase in blood pressure at 15 mu g kg (-1) minute(-1). During dopamine infusion hemoglobin concentrations were lower following acepromazine and this contributed to significantly lower arterial O-2 content.Acepromazine prevented the return in SVRI to baseline and reduced the magnitude of the increase in arterial pressure induced by higher doses of dopamine. However, reduced SRVI associated with lower doses of dopamine and the ability of dopamine to increase CI and DO2I were not modified by acepromazine premedication.Previous acepromazine administration reduces the efficacy of dopamine as a vasopressor agent in isoflurane anesthetized dogs. Other beneficial effects of dopamine such as increased CO are not modified by acepromazine.
Resumo:
Metabolic differences derived from social stress usually show data with high variance that may hinder the finding of important differences. Since such high variance may be caused by agonistic variability occurring during social interactions, this work tested whether metabolism is associated with agonistic profile in the cichlid fish Nile tilapia, Oreochromis niloticus (L.). Metabolism was inferred from oxygen consumption, resistance to progressive hypoxia and ventilatory rate. Fifteen pairs of alevins were used for each metabolic and behavioral series. An ethogram based on 8 types of agonistic interactions was employed. Agonistic profiles were determined and associated with the physiological parameters later on. The test of canonical correlation showed significant association between some agonistic profiles and metabolism. Ventral nipping and lateral fight appeared as the two most important in promoting association with metabolism.
Resumo:
This study investigated the effects of growth hormone therapy on energy expenditure, lipid profile, oxidative stress and cardiac energy metabolism in aging and obesity conditions. Life expectancy is increasing in world population and with it, the incidence of public health problems such as obesity and cardiac alterations. Because growth hormone (GH) concentration is referred to be decreased in aging conditions, a question must be addressed: what is the effect of GH on aging related adverse changes? To investigate the effects of GH on cardiac energy metabolism and its association with calorimetric parameters, lipid profile and oxidative stress in aged and obese rats, initially 32 male Wistar rats were divided into 2 groups (n = 16), C: given standard-chow and water; H: given hypercaloric-chow and receiving 30 % sucrose in its drinking water. After 45 days, both C and H groups were divided into 2 subgroups (n = 8), C + PL: standard-chow, water, and receiving saline subcutaneously; C + GH: standard-chow, water, and receiving 2 mg/kg/day rhGH subcutaneously; H + PL: hypercaloric-chow, 30 % sucrose, receiving saline subcutaneously; H + GH: hypercaloric-chow, 30 % sucrose, receiving rhGH subcutaneously. After 30 days, C + GH and H + PL rats had higher body mass index, Lee-index, body fat content, percent-adiposity, serum triacylglycerol, cardiac lipid-hydroperoxide, and triacylglycerol than C + PL. Energy-expenditure (RMR)/body weight, oxygen consumption and fat-oxidation were higher in H + GH than in H + PL. LDL-cholesterol was highest in H + GH rats, whereas cardiac pyruvate-dehydrogenase and phosphofrutokinase were higher in H + GH and H + PL rats than in C + PL. In conclusion, the present study brought new insights on aging and obesity, demonstrating for the first time that GH therapy was harmful in aged and obesity conditions, impairing calorimetric parameters and lipid profile. GH was disadvantageous in control old rats, having undesirable effects on triacylglycerol accumulation and cardiac oxidative stress.
Resumo:
The cardiovascular effects of dexmedetomidine alone or in combination with atropine were studied in six cats. Cats underwent four treatments in a randomized crossover design as follows: DEX15, saline + dexmedetomidine 15 mu g/kg; DEX30, saline + dexmedetomidine 30 mu g/kg; ADEX15, atropine + dexmedetomidine 15 mu g/kg; ADEX30, atropine + dexmedetomidine 30 mu g/kg. Pulse rate (PR) and systolic arterial pressure (SAP) decreased in DEX15 and DEX30. Premedication with atropine was effective in preventing bradycardia (PR < 100 beats/min) and resulted in a biphasic effect in blood pressure. Hypertension was followed by a gradual decrease in SAP. Rate pressure product decreased in DEX15 and DEX30 whereas in ADEX15 and ADEX30 it remained within baseline values for at least 60 min. Although premedication with atropine in cats sedated with dexmedetomidine prevents bradycardia, it induces hypertension and increases myocardial oxygen consumption. The magnitude of cardiovascular effects produced by dexmedetomidine in cats does not seem to be dose-related. (C) 2009 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)