854 resultados para evolutionary arms race
Resumo:
There is strong evidence from animal studies that prenatal stress has different effects on male and female offspring. In general, although not always, prenatal stress increases anxiety, depression and stress responses, both hypothalamic–pituitary–adrenal and cardiovascular, in female offspring rather than in male. Males are more likely to show learning and memory deficits. There have been few studies so far in humans which differentiate effects of prenatal stress on male and female psychopathology. Some studies support the animal models, but the evidence is inconsistent. The mediating mechanisms for any sex specific effects are little understood, but there is evidence that placental function can differ depending on the sex of the fetus. We suggest that there may be an evolutionary reason for any sex differences in the long term effects of prenatal stress. In a stressful environment it may be adaptive for females, who are more likely to stay in one place and look after children, to be more vigilant, alert to danger and thus show more stress responsiveness. This can give rise to a more anxious or depressed phenotype. With males it may be more adaptive to go out and explore new environments, compete with other males, and be more aggressive. For this it may help to be less responsive to external stressors. More research is needed into sex differences in the effects of prenatal stress in humans, to test these ideas.
Resumo:
Obesity is an escalating threat of pandemic proportions and has risen to such unrivaled prominence in such a short period of time that it has come to define a whole generation in many countries around the globe. The burden of obesity, however, is not equally shared among the population, with certain ethnicities being more prone to obesity than others, while some appear to be resistant to obesity altogether. The reasons behind this ethnic basis for obesity resistance and susceptibility, however, have remained largely elusive. In recent years, much evidence has shown that the level of brown adipose tissue thermogenesis, which augments energy expenditure and is negatively associated with obesity in both rodents and humans, varies greatly between ethnicities. Interestingly, the incidence of low birth weight, which is associated with an increased propensity for obesity and cardiovascular disease in later life, has also been shown to vary by ethnic background. This review serves to reconcile ethnic variations in BAT development and function with ethnic differences in birth weight outcomes to argue that the variation in obesity susceptibility between ethnic groups may have its origins in the in utero programming of BAT development and function as a result of evolutionary adaptation to cold environments.
Resumo:
Obesity is an escalating threat of pandemic proportions, currently affecting billions of people worldwide and exerting a devastating socioeconomic influence in industrialized countries. Despite intensive efforts to curtail obesity, results have proved disappointing. Although it is well recognized that obesity is a result of gene-environment interactions and that predisposition to obesity lies predominantly in our evolutionary past, there is much debate as to the precise nature of how our evolutionary past contributed to obesity. The “thrifty genotype” hypothesis suggests that obesity in industrialized countries is a throwback to our ancestors having undergone positive selection for genes that favored energy storage as a consequence of the cyclical episodes of famine and surplus after the advent of farming 10 000 years ago. Conversely, the “drifty genotype” hypothesis contends that the prevalence of thrifty genes is not a result of positive selection for energy-storage genes but attributable to genetic drift resulting from the removal of predative selection pressures. Both theories, however, assume that selection pressures the ancestors of modern humans living in western societies faced were the same. Moreover, neither theory adequately explains the impact of globalization and changing population demographics on the genetic basis for obesity in developed countries, despite clear evidence for ethnic variation in obesity susceptibility and related metabolic disorders. In this article, we propose that the modern obesity pandemic in industrialized countries is a result of the differential exposure of the ancestors of modern humans to environmental factors that began when modern humans left Africa around 70 000 years ago and migrated through the globe, reaching the Americas around 20 000 years ago. This article serves to elucidate how an understanding of ethnic differences in genetic susceptibility to obesity and the metabolic syndrome, in the context of historic human population redistribution, could be used in the treatment of obesity in industrialized countries
Resumo:
This article investigates the impact of exposure to a serious, unusual, and unforeseen malaria epidemic in northeast Brazil in 1938–40 on subsequent human capital attainment and income. Arguing the event was exogenous, the article exploits cohort and regional heterogeneity in exposure to identify effects. Results are consistent with differential mortality rates according to gender and socioeconomic status, such that heterogeneous selection and scarring effects are observed. Analyzing by gender alone, positive (selection) effects are found for men, and mixed (positive and negative) effects for women. Allowing for heterogeneity by race, selection effects persist for men. In contrast, positive (selection) effects are observed for nonwhite women, and negative (scarring) effects for white women. Results contribute to evidence suggesting that exposure to negative environmental shocks affects human capital attainment, while also suggesting it heterogeneously affects cohort composition.
Resumo:
The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.
Resumo:
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source 4 population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to nonacclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.
Resumo:
We study segregation phenomena in 57 groups selected from the 2dF Percolation-Inferred Galaxy Groups (2PIGG) catalogue of galaxy groups. The sample corresponds to those systems located in areas of at least 80 per cent redshift coverage out to 10 times the radius of the groups. The dynamical state of the galaxy systems was determined after studying their velocity distributions. We have used the Anderson-Darling test to distinguish relaxed and non-relaxed systems. This analysis indicates that 84 per cent of groups have galaxy velocities consistent with the normal distribution, while 16 per cent of them have more complex underlying distributions. Properties of the member galaxies are investigated taking into account this classification. Our results indicate that galaxies in Gaussian groups are significantly more evolved than galaxies in non-relaxed systems out to distances of similar to 4R(200), presenting significantly redder (B - R) colours. We also find evidence that galaxies with M(R) <= -21.5 in Gaussian groups are closer to the condition of energy equipartition.
Resumo:
The diversity of floral forms has long been considered a prime example of radiation through natural selection. However, little is still known about the evolution of floral traits, a critical piece of evidence for the understanding of the processes that may have driven flower evolution. We studied the pattern of evolution of quantitative floral traits in a group of Neotropical lianas (Bignonieae, Bignoniaceae) and used a time-calibrated phylogeny as basis to: (1) test for phylogenetic signal in 16 continuous floral traits; (2) evaluate the rate of evolution in those traits; and (3) reconstruct the ancestral state of the individual traits. Variation in floral traits among extant species of Bignonieae was highly explained by their phylogenetic history. However, opposite signals were found in floral traits associated with the attraction of pollinators (calyx and corolla) and pollen transfer (androecium and gynoecium), suggesting a differential role of selection in different floral whorls. Phylogenetic independent contrasts indicate that traits evolved at different rates, whereas ancestral character state reconstructions indicate that the ancestral size of most flower traits was larger than the mean observed sizes of the same traits in extant species. The implications of these patterns for the reproductive biology of Bignonieae are discussed. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 378-390.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.
Resumo:
An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Parsimony-based phylogenetic analyses of the neotropical tribe Helieae (Gentianaceae) are presented, including 22 of the 23 genera and 60 species. This study is based on data from morphology, palynology, and seed micromorphology (127 structural characters), and DNA sequences (matK, trnL intron, ITS). Phylogenetic reconstructions based on ITS and morphology provided the greatest resolution, morphological data further helping to tentatively place several taxa for which DNA was not available (Celiantha, Lagenanthus, Rogersonanthus, Roraimaea, Senaea, Sipapoantha, Zonanthus). Celiantha, Prepusa and Senaea together appear as the sister clade to the rest of Helieae. The remainder of Helieae is largely divided into two large subclades, the Macrocarpaea subclade and the Symbolanthus subclade. The first subclade includes Macrocarpaea, sister to Chorisepalum, Tochia, and Zonanthus. Irlbachia and Neblinantha are placed as sisters to the Symbolanthus subclade, which includes Aripuana, Calolisianthus, Chelonanthus, Helia, Lagenanthus, Lehmanniella, Purdieanthus, Rogersonanthus, Roraimaea, Sipapoantha, and symbolanthus. Generic-level polyphyly is detected in Chelonanthus and Irlbachia. Evolution of morphological characters is discussed, and new pollen and seed characters are evaluated for the first time in a combined morphological-molecular phylogenetic analysis.
Resumo:
Changes in patterns and magnitudes of integration may influence the ability of a species to respond to selection. Consequently, modularity has often been linked to the concept of evolvability, but their relationship has rarely been tested empirically. One possible explanation is the lack of analytical tools to compare patterns and magnitudes of integration among diverse groups that explicitly relate these aspects to the quantitative genetics framework. We apply such framework here using the multivariate response to selection equation to simulate the evolutionary behavior of several mammalian orders in terms of their flexibility, evolvability and constraints in the skull. We interpreted these simulation results in light of the integration patterns and magnitudes of the same mammalian groups, described in a companion paper. We found that larger magnitudes of integration were associated with a blur of the modules in the skull and to larger portions of the total variation explained by size variation, which in turn can exert a strong evolutionary constraint, thus decreasing the evolutionary flexibility. Conversely, lower overall magnitudes of integration were associated with distinct modules in the skull, to smaller fraction of the total variation associated with size and, consequently, to weaker constraints and more evolutionary flexibility. Flexibility and constraints are, therefore, two sides of the same coin and we found them to be quite variable among mammals. Neither the overall magnitude of morphological integration, the modularity itself, nor its consequences in terms of constraints and flexibility, were associated with absolute size of the organisms, but were strongly associated with the proportion of the total variation in skull morphology captured by size. Therefore, the history of the mammalian skull is marked by a trade-off between modularity and evolvability. Our data provide evidence that, despite the stasis in integration patterns, the plasticity in the magnitude of integration in the skull had important consequences in terms of evolutionary flexibility of the mammalian lineages.
Resumo:
Studies about composition of repetitive sequences and their chromosomal location have been helpful to evolutionary studies in many distinct organisms. In order to keep on assessing the possible relationships among different cytotypes of Astyanax fasciatus (Teleostei, Characiformes) in the Mogi-Guacu River (Sao Paulo State, Brazil), C-banding, chromomycin A 3 staining, and fluorescent in situ hybridization with a repetitive DNA sequence (As51) isolated from Astyanax scabripinnis were performed in the present work. The constitutive heterochromatin was distributed in terminal regions on long arms of submetacentric, subtelocentric, and acrocentric chromosomes and in the terminal region on short arms of a pair of submetacentric chromosomes in both standard cytotypes. This latter heterochromatic site was also GC-rich, as revealed by chromomycin A(3) staining, corresponding to the nucleolar organizer region (NOR), as shown by previous studies. The sites of the satellite As51 DNA were located in terminal regions on long arms of several chromosomes. Some variant karyotypic forms, which diverge from the two standard cytotypes, also presented distinctive chromosomes carrying As51 satellite DNA. It is possible that the standard 2n = 46 cytotype represents an invader population in the Mogi-Guacu River able to interbreed with the resident standard 2n = 48 cytotype. Therefore, the variant karyotypes would be related to a possible viable offspring, where complementary chromosomal rearrangements could favor new locations of the satellite DNA analyzed. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Spiders are considered conservative with regard to their resting metabolic rate, presenting the same allometric relation with body mass as the majority of land-arthropods. Nevertheless, web-building is thought to have a great impact on the energetic metabolism, and any modification that affects this complex behavior is expected to have an impact over the daily energetic budget. We analyzed the possibility of the presence of the cribellum having an effect on the allometric relation between resting metabolic rate and body mass for an ecribellate species (Zosis geniculata) and a cribellate one (Metazygia rogenhoferi), and employed a model selection approach to test if these species had the same allometric relationship as other land-arthropods. Our results show that M. rogenhoferi has a higher resting metabolic rate, while Z. geniculata fitted the allometric prediction for land arthropods. This indicates that the absence of the cribellum is associated with a higher resting metabolic rate, thus explaining the higher promptness to activity found for the ecribellate species. If our result proves to be a general rule among spiders, the radiation of Araneoidea could be connected to a more energy-consuming life style. Thus, we briefly outline an alternative model of diversification of Araneoidea that accounts for this possibility. (C) 2011 Elsevier Ltd. All rights reserved.