923 resultados para egg production rate


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is an empirical investigation of the relationship between exchange rate volatility and international trade, focusing on East Asia. It finds that intra-East Asian trade is discouraged by exchange rate volatility more seriously than trade in other regions because intermediate goods trade in production networks, which is quite sensitive to exchange rate volatility compared with other types of trade, occupies a significant fraction of trade. In addition, this negative effect of volatility is mainly induced by the unanticipated volatility and has an even greater impact than that of tariffs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rate of CO2 assimilation was determined above the Broken Spur and TAG active hydrothermal fields for three main ecosystems: (1) hydrothermal vents; (2) 300 m near-bottom layer of plume water; and (3) bottom sediments. In water samples from warm (40-45°C) vents assimilation rates were maximal and reached 2.82-3.76 µg C/l/day. In plume waters CO2 assimilation rates ranged from 0.38 to 0.65 µg C/l/day. In bottom sediments CO2 assimilation rates varied from 0.8 to 28.0 µg C/l/day, rising up to 56 mg C/kg/day near shrimp swarms. In the most active plume zone of the long-living TAG field bacterial production of organic matter (OM) from carbonic is up to 170 mg C/m**2/day); production of autotrophic process of bacterial chemosynthesis reaches about 90% (156 mg C/m**2/day). Thus, chemosynthetic production of OM in September-October is almost equal to that of photosynthetic production in the oceanic region. Bacterial production of OM above the Broken Spur hydrothermal field is one order lower and reaches only 20 mg C/m**2/day.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h(-1)) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci. (c) 2005 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coccolithophore Emiliania huxleyi was cultured under a broad range of carbonate chemistry conditions to distinguish the effects of individual carbonate system parameters on growth, primary production, and calcification. In the first experiment, alkalinity was kept constant and the fugacity of CO2(fCO2) varied from 2 to 600 Pa (1Pa ~ 10 µatm). In the second experiment, pH was kept constant (pHfree = 8) with fCO2 varying from 4 to 370 Pa. Results of the constant-alkalinity approach revealed physiological optima for growth, calcification, and organic carbon production at fCO2 values of ~20Pa, ~40 Pa, and ~80 Pa, respectively. Comparing this with the constant-pH approach showed that growth and organic carbon production increased similarly from low to intermediate CO2 levels but started to diverge towards higher CO2 levels. In the high CO2 range, growth rates and organic carbon production decreased steadily with declining pH at constant alkalinity while remaining consistently higher at constant pH. This suggests that growth and organic carbon production rates are directly related to CO2 at low (sub-saturating) concentrations, whereas towards higher CO2 levels they are adversely affected by the associated decrease in pH. A pH dependence at high fCO2 is also indicated for calcification rates, while the key carbonate system parameter determining calcification at low fCO2 remains unclear. These results imply that key metabolic processes in coccolithophores have their optima at different carbonate chemistry conditions and are influenced by different parameters of the carbonate system at both sides of the optimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of naturally occurring radioactive materials (NORM) activity concentration, gamma dose rate and radon (222Rn) exhalation from the waste streams of large-scale onshore petroleum operations. Types of activities covered included; sludge recovery from separation tanks, sludge farming, NORM storage, scaling in oil tubulars, scaling in gas production and sedimentation in produced water evaporation ponds. Field work was conducted in the arid desert terrain of an operational oil exploration and production region in the Sultanate of Oman. The main radionuclides found were 226Ra and 210Pb (238U - series), 228Ra and 228Th (232Th - series), and 227Ac (235U - series), along with 40K. All activity concentrations were higher than the ambient soil level and varied over several orders of magnitude. The range of gamma dose rates at a 1 m height above ground for the farm treated sludge had a range of 0.06 0.43 µSv h 1, and an average close to the ambient soil mean of 0.086 ± 0.014 µSv h 1, whereas the untreated sludge gamma dose rates had a range of 0.07 1.78 µSv h 1, and a mean of 0.456 ± 0.303 µSv h 1. The geometric mean of ambient soil 222Rn exhalation rate for area surrounding the sludge was mBq m 2 s 1. Radon exhalation rates reported in oil waste products were all higher than the ambient soil value and varied over three orders of magnitude. This study resulted in some unique findings including: (i) detection of radiotoxic 227Ac in the oil scales and sludge, (ii) need of a new empirical relation between petroleum sludge activity concentrations and gamma dose rates, and (iii) assessment of exhalation of 222Rn from oil sludge. Additionally the study investigated a method to determine oil scale and sludge age by the use of inherent behaviour of radionuclides as 228Ra:226Ra and 228Th:228Ra activity ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5–6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0