944 resultados para durability
Resumo:
Moisture induced distresses have been the prevalent distress type affecting the deterioration of both asphalt and concrete pavement sections. While various surface techniques have been employed over the years to minimize the ingress of moisture into the pavement structural sections, subsurface drainage components like open-graded base courses remain the best alternative in minimizing the time the pavement structural sections are exposed to saturated conditions. This research therefore focuses on assessing the performance and cost-effectiveness of pavement sections containing both treated and untreated open-graded aggregate base materials. Three common roadway aggregates comprising of two virgin aggregates and one recycled aggregate were investigated using four open-ended gradations and two binder types. Laboratory tests were conducted to determine the hydraulic, mechanical and durability characteristics of treated and untreated open-graded mixes made from these three aggregate types. Results of the experimental program show that for the same gradation and mix design types, limestone samples have the greatest drainage capacity, stability to traffic loads and resistance to degradation from environmental conditions like freeze-thaw. However, depending on the gradation and mix design used, all three aggregate types namely limestone, natural gravel and recycled concrete can meet the minimum coefficient of hydraulic conductivity required for good drainage in most pavements. Tests results for both asphalt and cement treated open-graded samples indicate that a percent air void content within the range of 15-25 will produce a treated open-graded base course with sufficient drainage capacity and also long term stability under both traffic and environmental loads. Using the new Mechanistic and Empirical Design Guide software, computer simulations of pavement performance were conducted on pavement sections containing these open-graded base aggregate base materials to determine how the MEPDG predicted pavement performance is sensitive to drainage. Using three truck traffic levels and four climatic regions, results of the computer simulations indicate that the predicted performance was not sensitive to the drainage characteristics of the open-graded base course. Based on the result of the MEPDG predicted pavement performance, the cost-effectiveness of the pavement sections with open-graded base was computed on the assumption that the increase service life experienced by these sections was attributed to the positive effects of subsurface drainage. The two cost analyses used gave two contrasting results with the one indicating that the inclusion of open-graded base courses can lead to substantial savings.
Resumo:
Carbon nanotubes (CNTs) are interesting materials with extraordinary properties for various applications. Here, vertically-aligned multiwalled CNTs (VA-MWCNTs) are grown by our dual radio frequency plasma enhanced chemical vapor deposition (PECVD). After optimizing the synthesis processes, these VA-MWCNTs were fabricated in to a series of devices for applications in vacuum electronics, glucose biosensors, glucose biofuel cells, and supercapacitors In particular, we have created the so-called PMMA-CNT matrices (opened-tip CNTs embedded in poly-methyl methacrylate) that are promising components in a novel energy sensing, generation and storage (SGS) system that integrate glucose biosensors, biofuel cells, and supercapacitors. The content of this thesis work is described as follows: 1. We have first optimized the synthesis of VA-MWCNTs by our PECVD technique. The effects of CH4 flow rate and growth duration on the lengths of these CNTs were studied. 2. We have characterized these VA-MWCNTs for electron field emission. We noticed that as grown CNTs suffers from high emission threshold, poor emission density and poor long-term stability. We attempted a series of experiments to understand ways to overcome these problems. First, we decrease the screening effects on VA-MWCNTs by creating arrays of self-assembled CNT bundles that are catalyst-free and opened tips. These bundles are found to enhance the field emission stability and emission density. Subsequently, we have created PMMA-CNT matrices that are excellent electron field emitters with an emission threshold field of more than two-fold lower than that of the as-grown sample. Furthermore, no significant emission degradation was observed after a continuous emission test of 40 hours (versus much shorter tests in reported literatures). Based on the new understanding we learnt from the PMMA-CNT matrices, we further created PMMA-STO-CNT matrices by embedding opened-tip VA-MWCNTs that are coated with strontium titanate (SrTiO3) with PMMA. We found that the PMMA-STO-CNT matrices have all the desired properties of the PMMA-CNT matrices. Furthermore, PMMA-STO-CNT matrices offer much lower emission threshold field, about five-fold lower than that of as grown VA-MWCNTs. The new understandings we obtained are important for practical application of VA-MWCNTs in field emission devices. 3. Subsequently, we have functionalized PMMA-CNT matrices for glucose biosensing. Our biosensor was developed by immobilized glucose oxidase (GOχ) on the opened-tip CNTs exposed on the matrices. The durability, stability and sensitivity of the biosensor were studied. In order to understand the performance of miniaturized glucose biosensors, we have then investigated the effect of working electrode area on the sensitivity and current level of our biosensors. 4. Next, functionalized PMMA-CNT matrices were utilized for energy generation and storage. We found that PMMA-CNT matrices are promising component in glucose/O2 biofuel cells (BFCs) for energy generation. The construction of these BFCs and the effect of the electrode area on the power density of these BFCs were investigated. Then, we have attempted to use PMMA-CNT matrices as supercapacitors for energy storage devices. The performance of these supercapacitors and ways to enhance their performance are discussed. 5. Finally, we further evaluated the concept of energy SGS system that integrated glucose biosensors, biofuel cells, and supercapacitors. This SGS system may be implantable to monitor and control the blood glucose level in our body.
Resumo:
Recent changes in the cost and availability of natural gas (NG) as compared to diesel have sparked interest at all levels of the commercial shipping sector. In particular, Class 1 heavy-duty rail has been researching NG as a supplement to diesel combustion. This study investigates the relative economic and emissions advantage of making use of the energy efficiencies if combustion is circumvented altogether by use of fuel cell (FC) technologies applied to NG. FC technology for the transport sector has primarily been developed for the private automobile. However, FC use in the automobile sector faces considerable economic and logistical barriers such as cost, range, durability, and refueling infrastructure. The heavy-duty freight sector may be a more reasonable setting to introduce FC technology to the transportation market. The industry has shown interest in adopting NG as a potential fuel by already investing in NG infrastructure and locomotives. The two most promising FC technologies are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). SOFCs are more efficient and capable of accepting any kind of fuel, which makes them particularly attractive. The rail industry can benefit from the adoption of FC technology through reduced costs and emissions, as well as limiting dependence on diesel, which accounts for a large portion of operation expenses for Class 1 railroads. This report provides an economic feasibility analysis comparing the use of PEMFCs and SOFCs in heavy freight rail transport applications. The scope is to provide insight into which technologies could be pursued by the industry and to prioritize technologies that need further development. Initial results do not show economic potential for NG and fuel cells in locomotion, but some minimal potential for reduced emissions is seen. Various technology configurations and market scenarios analyzed could provide savings if the price of LNG is decreased and the price of diesel increases. The most beneficial areas of needed research include technology development for the variable output of SOFCs, and hot start-up optimization.
Resumo:
The need for a stronger and more durable building material is becoming more important as the structural engineering field expands and challenges the behavioral limits of current materials. One of the demands for stronger material is rooted in the effects that dynamic loading has on a structure. High strain rates on the order of 101 s-1 to 103 s-1, though a small part of the overall types of loading that occur anywhere between 10-8 s-1 to 104 s-1 and at any point in a structures life, have very important effects when considering dynamic loading on a structure. High strain rates such as these can cause the material and structure to behave differently than at slower strain rates, which necessitates the need for the testing of materials under such loading to understand its behavior. Ultra high performance concrete (UHPC), a relatively new material in the U.S. construction industry, exhibits many enhanced strength and durability properties compared to the standard normal strength concrete. However, the use of this material for high strain rate applications requires an understanding of UHPC’s dynamic properties under corresponding loads. One such dynamic property is the increase in compressive strength under high strain rate load conditions, quantified as the dynamic increase factor (DIF). This factor allows a designer to relate the dynamic compressive strength back to the static compressive strength, which generally is a well-established property. Previous research establishes the relationships for the concept of DIF in design. The generally accepted methodology for obtaining high strain rates to study the enhanced behavior of compressive material strength is the split Hopkinson pressure bar (SHPB). In this research, 83 Cor-Tuf UHPC specimens were tested in dynamic compression using a SHPB at Michigan Technological University. The specimens were separated into two categories: ambient cured and thermally treated, with aspect ratios of 0.5:1, 1:1, and 2:1 within each category. There was statistically no significant difference in mean DIF for the aspect ratios and cure regimes that were considered in this study. DIF’s ranged from 1.85 to 2.09. Failure modes were observed to be mostly Type 2, Type 4, or combinations thereof for all specimen aspect ratios when classified according to ASTM C39 fracture pattern guidelines. The Comite Euro-International du Beton (CEB) model for DIF versus strain rate does not accurately predict the DIF for UHPC data gathered in this study. Additionally, a measurement system analysis was conducted to observe variance within the measurement system and a general linear model analysis was performed to examine the interaction and main effects that aspect ratio, cannon pressure, and cure method have on the maximum dynamic stress.
Resumo:
In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion. The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly related with its composition and structure. Based on this point, Pt-Fe NWs with a diameter of 2 - 3 nm were accurately prepared. They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. Recently, biomass-derived alcohols have attracted enormous attention as promising fuels (to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a more active Pt catalyst, simultaneous generation of both high power-density electricity and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was achieved in an AEMFC. To investigate the production of valuable chemicals from glycerol electro-oxidation, two anion-exchange membrane electro-catalytic reactors were designed. The research shows that the electro-oxidation product distribution is strongly dependent on the anode applied potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have been elucidated: continuous oxidation of OH groups (to produce tartronate and mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) is the dominant reaction path at higher potentials.
Resumo:
BACKGROUND: Durability of protection and long-term quality of life (QoL) are critical outcome parameters of abdominal aortic aneurysm (AAA) repair. The aim of the present study was to compare results of endovascular and open aneurysm repair (EVAR and OR) with adjusted standard populations, including stratification for urgency of presentation. METHODS: Retrospective analysis of prospectively collected data of 401 consecutive patients presenting with AAA between January 1998 and December 2002. Cross-sectional follow up was 58 +/- 29 months. Patients were grouped into three cohorts: elective EVAR (n = 68), elective OR (n = 244), and emergency OR (including symptomatic and ruptured AAA, n = 89). Endpoints were perioperative (i.e., 30 days or in-hospital) and late mortality rates, as well as long-term QoL as assessed by the Short Form health survey questionnaire (SF-36). RESULTS: Mean age was lower in the elective OR cohort (66 +/- 10 years) than in the EVAR cohort (72 +/- 7 years; p < .05). Perioperative mortality rates were 4.4%, 0.4%, and 10.1%, for the EVAR, elective OR, and emergency OR cohorts, respectively (p < .05). Corresponding cumulative survival rates after 4 years were 67%, 89%, and 69%, respectively. Long-term QoL SF-36 scores were in all cohorts similar to age- and gender-adjusted standard populations, which score between 85 and 115: 99.6 +/- 35.8 (EVAR), 101.3 +/- 32.4 (elective OR), and 100.4 +/- 36.5 (emergency OR). CONCLUSIONS: Long-term QoL is not permanently impaired after AAA repair, but returns in long-term survivors to what would be expected in a standard population. In this respect, differences were found neither between EVAR and OR, nor between elective and emergency repair. Perioperative mortality rates were highest in patients undergoing emergency OR. The outlook for such patients after the perioperative period, however, was similar to that for patients undergoing elective repair.
Resumo:
OBJECTIVES: This study aimed to evaluate the degradation rate and long-term vascular responses to the absorbable metal stent (AMS). BACKGROUND: The AMS demonstrated feasibility and safety at 4 months in human coronary arteries. METHODS: The PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting) was a prospective, multicenter clinical trial of 63 patients with coronary artery disease who underwent AMS implantation. Angiography and intravascular ultrasound (IVUS) were conducted immediately after AMS deployment and at 4 months. Eight patients who did not require repeat revascularization at 4 months underwent late angiographic and IVUS follow-up from 12 to 28 months. RESULTS: The AMS was well-expanded upon deployment without immediate recoil. The major contributors for restenosis as detected by IVUS at 4 months were: decrease of external elastic membrane volume (42%), extra-stent neointima (13%), and intra-stent neointima (45%). From 4 months to late follow-up, paired IVUS analysis demonstrated complete stent degradation with durability of the 4-month IVUS indexes. The neointima was reduced by 3.6 +/- 5.2 mm(3), with an increase in the stent cross sectional area of 0.5 +/- 1.0 mm(2) (p = NS). The median in-stent minimal lumen diameter was increased from 1.87 to 2.17 mm at long-term follow-up. The median angiographic late loss was reduced from 0.62 to 0.40 mm by quantitative coronary angiography from 4 months to late follow-up. CONCLUSIONS: Intravascular ultrasound imaging supports the safety profile of AMS with degradation at 4 months and maintains durability of the results without any early or late adverse findings. Slower degradation is warranted to provide sufficient radial force to improve long-term patency rates of the AMS.
Resumo:
Endovascular aneurysm repair has matured significantly over the last 20 years and is becoming increasingly popular as a minimally invasive treatment option for patients with abdominal aortic aneurysms (AAA). Long-term durability of this fascinating treatment, however, is in doubt as continuing aneurysmal degeneration of the aortoiliac graft attachment zones is clearly associated with late adverse sequelae. In recent years, our growing understanding of the physiopathology of AAA formation has facilitated scrutiny of various potential drug treatment concepts. In this article we review the mechanical and biological challenges associated with endovascular treatment of infrarenal AAAs and discuss potential approaches to ongoing aneurysmal degeneration, which hampers long-term outcomes of this minimally invasive therapy.
Resumo:
BACKGROUND Antiretroviral drugs have been shown to reduce risk of mother-to-child transmission of human immunodeficiency virus (HIV) and are also widely used for post-exposure prophylaxis for parenteral and sexual exposures. Sexual transmission may be lower in couples in which one partner is infected with HIV and the other is not and the infected partner is on antiretroviral therapy (ART). OBJECTIVES To determine if ART use in an HIV-infected member of an HIV-discordant couple is associated with lower risk of HIV transmission to the uninfected partner compared to untreated discordant couples. SEARCH METHODS We used standard Cochrane methods to search electronic databases and conference proceedings with relevant search terms without limits to language. SELECTION CRITERIA Randomised controlled trials (RCT), cohort studies and case-control studies of HIV-discordant couples in which the HIV-infected member of the couple was being treated or not treated with ART DATA COLLECTION AND ANALYSIS: Abstracts of all trials identified by electronic or bibliographic scanning were examined independently by two authors. We initially identified 3,833 references and examined 87 in detail for study eligibility. Data were abstracted independently using a standardised abstraction form. MAIN RESULTS One RCT and nine observational studies were included in the review. These ten studies identified 2,112 episodes of HIV transmission, 1,016 among treated couples and 1,096 among untreated couples. The rate ratio for the single randomised controlled trial was 0.04 [95% CI 0.00, 0.27]. All index partners in this study had CD4 cell counts at baseline of 350-550 cells/µL. Similarly, the summary rate ratio for the nine observational studies was 0.58 [95% CI 0.35, 0.96], with substantial heterogeneity (I(2)=64%). After excluding two studies with inadequate person-time data, we estimated a summary rate ratio of 0.36 [95% CI 0.17, 0.75] with substantial heterogeneity (I(2)=62%). We also performed subgroup analyses among the observational studies to see if the effect of ART on prevention of HIV differed by the index partner's CD4 cell count. Among couples in which the infected partner had ≥350 CD4 cells/µL, we estimated a rate ratio of 0.12 [95% CI 0.01, 1.99]. In this subgroup, there were 247 transmissions in untreated couples and 30 in treated couples. AUTHORS' CONCLUSIONS ART is a potent intervention for prevention of HIV in discordant couples in which the index partner has ≤550 CD4 cells/µL. A recent multicentre RCT confirms the suspected benefit seen in earlier observational studies and reported in more recent ones. Questions remain about durability of protection, the balance of benefits and adverse events associated with earlier therapy, long-term adherence and transmission of ART-resistant strains to partners. Resource limitations and implementation challenges must also be addressed.Counselling, support, and follow up, as well as mutual disclosure, may have a role in supporting adherence, so programmes should be designed with these components. In addition to ART provision, the operational aspects of delivering such programmes must be considered.
Resumo:
Transcatheter aortic valve replacement (TAVR) constitutes a relatively new treatment option for the patients with severe symptomatic aortic stenosis. Evidence from registries and randomized control trials has underscored the value of this treatment in inoperable and high risk populations, while new developments in valve technology and TAVR enabling devices have reduced the risk of complications, simplified the procedure, and broadened the applications of this therapy. The initial promising clinical results and the potential of an effective less invasive treatment of aortic stenosis has not only created high expectations but also the need to address the pitfalls of TAVR technology. The evolving knowledge concerning the groups of patients who would benefit from this treatment, the limited long term follow-up data, the concerns about devices' long term durability, and the severity of complications remain important caveats which restrict the widespread clinical adoption of TAVR. The aim of this review article is to present the recent advances, highlight the limitations of TAVR technology, and discuss the future perspectives in this rapidly evolving field.
Resumo:
BACKGROUND The effectiveness and durability of endovascular revascularization therapies for chronic critical limb ischemia (CLI) are challenged by the extensive burden of infrapopliteal arterial disease and lesion-related characteristics (e.g., severe calcification, chronic total occlusions), which frequently result in poor clinical outcomes. While infrapopliteal vessel patency directly affects pain relief and wound healing, sustained patency and extravascular care both contribute to the ultimate "patient-centric" outcomes of functional limb preservation, mobility and quality of life (QoL). METHODS/DESIGN IN.PACT DEEP is a 2:1 randomized controlled trial designed to assess the efficacy and safety of infrapopliteal arterial revascularization between the IN.PACT Amphirion™ paclitaxel drug-eluting balloon (IA-DEB) and standard balloon angioplasty (PTA) in patients with Rutherford Class 4-5-6 CLI. DISCUSSION This multicenter trial has enrolled 358 patients at 13 European centers with independent angiographic core lab adjudication of the primary efficacy endpoint of target lesion late luminal loss (LLL) and clinically driven target lesion revascularization (TLR) in major amputation-free surviving patients through 12-months. An independent wound core lab will evaluate all ischemic wounds to assess the extent of healing and time to healing at 1, 6, and 12 months. A QoL questionnaire including a pain scale will assess changes from baseline scores through 12 months. A Clinical Events Committee and Data Safety Monitoring Board will adjudicate the composite primary safety endpoints of all-cause death, major amputation, and clinically driven TLR at 6 months and other trial endpoints and supervise patient safety throughout the study. All patients will be followed for 5 years. A literature review is presented of the current status of endovascular treatment of CLI with drug-eluting balloon and standard PTA. The rationale and design of the IN.PACT DEEP Trial are discussed. IN.PACT DEEP is a milestone, prospective, randomized, robust, independent core lab-adjudicated CLI trial that will evaluate the role of a new infrapopliteal revascularization technology, the IA-DEB, compared to PTA. It will assess the overall impact on infrapopliteal artery patency, limb salvage, wound healing, pain control, QoL, and patient mobility. The 1-year results of the adjudicated co-primary and secondary endpoints will be available in 2014. TRIAL REGISTRATION NCT00941733
Resumo:
This article provides an overview on procedure-related issues and uncertainties in outcomes after transcatheter aortic valve implantation (TAVI). The different access sites and how to select them in an individual patient are discussed. Also, the occurrence and potential predictors of aortic regurgitation (AR) after TAVI are addressed. The different methods to quantify AR are reviewed, and it appears that accurate and reproducible quantification is suboptimal. Complications such as prosthesis-patient mismatch and conduction abnormalities (and need for permanent pacemaker) are discussed, as well as cerebrovascular events, which emphasize the development of optimal anti-coagulative strategies. Finally, recent registries have shown the adoption of TAVI in the real world, but longer follow-up studies are needed to evaluate the outcome (but also prosthesis durability). Additionally, future studies are briefly discussed, which will address the use of TAVI in pure AR and lower-risk patients.
Resumo:
Abstract: The third-generation bovine pericardium Freedom SOLO (FS) stentless valve emerged in 2004 as a modified version of the Pericarbon Freedom stentless valve and as a very attractive alternative to stented bioprostheses. The design, choice of tissue, and anticalcification treatment fulfill most, if not all, requirements for an ideal valve substitute. The FS combines the single-suture, subcoronary implantation technique with the latest-generation bovine pericardial tissue and novel anticalcification treatment. The design allows imitation of the native healthy valve through unrestricted adaption to the patient's anatomy, reproducing a normal valve/root complex. However, despite hemodynamic performance superior to stented valves, we are approaching a critical observation period as superior durability, freedom from structural valve deterioration, and nonstructural failure has not been proven as expected. However, optimal performance and freedom from structural valve deterioration depend on correct sizing and perfect symmetric implantation, to ensure low leaflet stress. Any malpositioning can lead to tissue fatigue over time. Furthermore, the potential for better outcomes depends on optimal patient selection and observance of the limitations for the use of stentless valves, particularly for the FS. Clearly, stentless valve implantation techniques are less reproducible and standardized, and require surgeon-dependent experience and skill. Regardless of whether or not stentless valve durability surpasses third-generation stented bioprostheses, they will continue to play a role in the surgical repertoire. This review intends to help practitioners avoid pitfalls, observe limitations, and improve patient selection for optimal long-term outcome with the attractive FS stentless valve.
Resumo:
OBJECTIVES To report the mid-term results of aortic root replacement using a self-assembled biological composite graft, consisting of a vascular tube graft and a stented tissue valve. METHODS Between January 2005 and December 2011, 201 consecutive patients [median age 66 (interquartile range, IQR, 55-77) years, 31 female patients (15.4%), median logistic EuroSCORE 10 (IQR 6.8-23.2)] underwent aortic root replacement using a stented tissue valve for the following indications: annulo-aortic ectasia or ascending aortic aneurysm with aortic valve disease in 162 (76.8%) patients, active infective endocarditis in 18 (9.0%) and acute aortic dissection Stanford type A in 21 (10.4%). All patients underwent clinical and echocardiographic follow-up. We analysed survival and valve-related events. RESULTS The overall in-hospital mortality rate was 4.5%. One- and 5-year cardiac-related mortality rates were 3 and 6%, and overall survival was 95 ± 1.5 and 75 ± 3.6%, respectively. The rate of freedom from structural valve failure was 99% and 97 ± 0.4% at the 1- and 5-year follow-up, respectively. The incidence rates of prosthetic valve endocarditis were 3 and 4%, respectively. During a median follow-up of 28 (IQR 14-51) months, only 2 (1%) patients required valve-related redo surgery due to prosthetic valvular endocarditis and none suffered from thromboembolic events. One percent of patients showed structural valve deterioration without any clinical symptoms; none of the patients suffered greater than mild aortic regurgitation. CONCLUSIONS Aortic root replacement using a self-assembled biological composite graft is an interesting option. Haemodynamic results are excellent, with freedom from structured valve failure. Need for reoperation is extremely low, but long-term results are necessary to prove the durability of this concept.
Resumo:
Our workshop aims at a deeper understanding of various itineraries of pottery and dif-ferent forms of human mobilities in which pottery is relevant, bringing together archae-ological and anthropological perspectives. For thousands of years, pottery has been an important part of many societies’ material culture and therefore a major research topic in both disciplines. In past and present societies the material existence of ceramic vessels is informed by various movements across time and space but also by periods of stasis: from the mo-ment of their production until their exclusion from daily practices, either disposed as waste, excluded as funerary objects or stored as collectibles. In their seemingly endless material durability, ceramic vessels might outlive their human producers, distributors or consumers and travel farther and longer. Still they are embedded in the regimes of human mobility, ranging from daily subsistence-based mobility to long-term migrations. In such processes, pottery shifts between spatial, temporal, social, economic and cultural contexts. Thereby ceramic vessels are appropriated and integrated in new contexts of action and meaning, sometimes leading to material transformations. This workshop takes place in the context of our archaeological research project „Mobili-ties, Entanglements and Transformations in Neolithic Societies on the Swiss Plateau (3900-3500 BC)“ to which our PhDs are connected. We address the above outlined topic by analysing the production of pottery. Based on dendrochronologically dated settle-ments between 3900 and 3500 BC, two regional pottery styles and their local variations are well known, Pfyn and Cortaillod. The vessels share the same habitus and were made of clays and temper deriving from the settlements’ surroundings. However, some vessels specific to other pottery styles are also present on the sites. They are characteristic for pottery styles known from more or less far off regions (Michelsberg, Munzingen or Néo-lithique Moyen Bourguignon). Some of them were travelling objects, as their non local raw materials show. Others seem to have been produced locally, pointing to long-term mobility and a change of residence from neighbouring social groups.