928 resultados para dry climate events
Resumo:
Reconstructing Northern Hemisphere ice-sheet oscillations and meltwater routing to the ocean is important to better understand the mechanisms behind abrupt climate changes. To date, research efforts have mainly focused on the North American (Laurentide) ice-sheets (LIS), leaving the potential role of the European Ice Sheet (EIS), and of the Scandinavian ice-sheet (SIS) in particular, largely unexplored. Using neodymium isotopes in detrital sediments deposited off the Channel River, we provide a continuous and well-dated record for the evolution of the EIS southern margin through the end of the last glacial period and during the deglaciation. Our results reveal that the evolution of EIS margins was accompanied with substantial ice recession (especially of the SIS) and simultaneous release of meltwater to the North Atlantic. These events occurred both in the course of the EIS to its LGM position (i.e., during Heinrich Stadial –HS– 3 and HS2; ∼31–29 ka and ∼26–23 ka, respectively) and during the deglaciation (i.e., at ∼22 ka, ∼20–19 ka and from 18.2 ± 0.2 to 16.7 ± 0.2 ka that corresponds to the first part of HS1). The deglaciation was discontinuous in character, and similar in timing to that of the southern LIS margin, with moderate ice-sheet retreat (from 22.5 ± 0.2 ka in the Baltic lowlands) as soon as the northern summer insolation increase (from ∼23 ka) and an acceleration of the margin retreat thereafter (from ∼20 ka). Importantly, our results show that EIS retreat events and release of meltwater to the North Atlantic during the deglaciation coincide with AMOC destabilisation and interhemispheric climate changes. They thus suggest that the EIS, together with the LIS, could have played a critical role in the climatic reorganization that accompanied the last deglaciation. Finally, our data suggest that meltwater discharges to the North Atlantic produced by large-scale recession of continental parts of Northern Hemisphere ice sheets during HS, could have been a possible source for the oceanic perturbations (i.e., AMOC shutdown) responsible for the marine-based ice stream purge cycle, or so-called HE's, that punctuate the last glacial period.
Resumo:
Previous studies have shown that extreme weather events are on the rise in response to our changing climate. Such events are projected to become more frequent, more intense, and longer lasting. A consistent exposure metric for measuring these extreme events as well as information regarding how these events lead to ill health are needed to inform meaningful adaptation strategies that are specific to the needs of local communities. Using federal meteorological data corresponding to 17 years (1997-2013) of the National Health Interview Survey, this research: 1) developed a location-specific exposure metric that captures individuals’ “exposure” at a spatial scale that is consistent with publicly available county-level health outcome data; 2) characterized the United States’ population in counties that have experienced higher numbers of extreme heat events and thus identified population groups likely to experience future events; and 3) developed an empirical model describing the association between exposure to extreme heat events and hay fever. This research confirmed that the natural modes of forcing (e.g., El Niño-Southern Oscillation), seasonality, urban-rural classification, and division of country have an impact on the number extreme heat events recorded. Also, many of the areas affected by extreme heat events are shown to have a variety of vulnerable populations including women of childbearing age, people who are poor, and older adults. Lastly, this research showed that adults in the highest quartile of exposure to extreme heat events had a 7% increased odds of hay fever compared to those in the lowest quartile, suggesting that exposure to extreme heat events increases risk of hay fever among US adults.
Resumo:
Roads represent a new source of mortality due to animal-vehicle risk of collision threatening log-term populations’ viability. Risk of road-kill depends on species sensitivity to roads and their specific life-history traits. The risk of road mortality for each species depends on the characteristics of roads and bioecological characteristics of the species. In this study we intend to know the importance of climatic parameters (temperature and precipitation) together with traffic and life history traits and understand the role of drought in barn owl population viability, also affected by road mortality in three scenarios: high mobility, high population density and the combination of previous scenarios (mixed) (Manuscript). For the first objective we correlated the several parameters (climate, traffic and life history traits). We used the most correlated variables to build a predictive mixed model (GLMM) the influence of the same. Using a population model we evaluated barn owl population viability in all three scenarios. Model revealed precipitation, traffic and dispersal have negative relationship with road-kills, although the relationship was not significant. Scenarios showed different results, high mobility scenario showed greater population depletion, more fluctuations over time and greater risk of extinction. High population density scenario showed a more stable population with lower risk of extinction and mixed scenario showed similar results as first scenario. Climate seems to play an indirect role on barn owl road-kills, it may influence prey availability which influences barn owl reproductive success and activity. Also, high mobility scenario showed a greater negative impact on viability of populations which may affect their ability and resilience to other stochastic events. Future research should take in account climate and how it may influence species life cycles and activity periods for a more complete approach of road-kills. Also it is important to make the best mitigation decisions which might include improving prey quality habitat.
Resumo:
Over the past decade, the diminishing Arctic sea ice has impacted the wave field, which depends on the ice-free ocean and wind. This study characterizes the wave climate in the Arctic spanning 1992–2014 from a merged altimeter data set and a wave hindcast that uses CFSR winds and ice concentrations from satellites as input. The model performs well, verified by the altimeters, and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction, creating distinct features in the wind seas and swells. The altimeters and model show that the reduction of sea ice coverage causes increasing wave heights instead of the wind. However, trends are convoluted by interannual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. In the Nordic Greenland Sea the NAO influences the decreasing wind speeds and wave heights. Swells are becoming more prevalent and wind-sea steepness is declining. The satellite data show the sea ice minimum occurs later in fall when the wind speeds increase. This creates more favorable conditions for wave development. Therefore we expect the ice freeze-up in fall to be the most critical season in the Arctic and small changes in ice cover, wind speeds, and wave heights can have large impacts to the evolution of the sea ice throughout the year. It is inconclusive how important wave–ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.
Resumo:
Increased occurrence of drought and dry spells during the growing season have resulted in increased interest in protection of tropical water catchment areas. In Mgeta, a water catchment area in the Uluguru Mountains in Tanzania, water used for vegetable and fruit production is provided through canals from the Uluguru South Forest Reserve. The clearing of forest land for cultivation in the steep slopes in the area is causing severe land degradation, which is threatening the water catchment area, livelihoods, and food security of the local communities, as well as the major population centers in the lowlands. In this paper, the economic performance of a traditional cropping-livestock system with East African (EA)-goats and pigs and extensive vegetable production is compared with a more sustainable and environmentally friendly crop-dairy goat production system. A linear programming (LP) crop-livestock model, maximizing farm income considering the environmental constraints in the area was applied for studying the economic performance of dairy goats in the production system. The model was worked out for the rainy and dry seasons and the analysis was conducted for a basic scenario representing the current situation, based on the variability in the 30 years period from 1982-2012, and in a scenario of both lower crop yields and increased crop variability due to climate change. Data obtained from a sample of 60 farmers that were interviewed using a questionnaire was used to develop and parameterize the model. The study found that in the steep slopes of the area, a crop-dairy goat system with extensive use of grass and multipurpose trees (MPTs) would do better than the traditional vegetable gardening with the EA goat production system. The crop-dairy goat system was superior both in the basic and in a climate change scenario since the yield variation of the grass and MPTs system was less affected compared to vegetable crops due to more tree cover and the use of perennial grasses. However, the goat milk production in the area was constrained by inadequate feeding and lack of an appropriate breeding program. Hence, farmers should enhance goat milk production by supplementing with more concentrate feed and by implementing goat-breeding principles. Moreover, policy measures to promote such a development are briefly discussed.
Resumo:
Global climate change is predicted to have impacts on the frequency and severity of flood events. In this study, output from Global Circulation Models (GCMs) for a range of possible future climate scenarios was used to force hydrologic models for four case study watersheds built using the Soil and Water Assessment Tool (SWAT). GCM output was applied with either the "delta change" method or a bias correction. Potential changes in flood risk are assessed based on modeling results and possible relationships to watershed characteristics. Differences in model outputs when using the two different methods of adjusting GCM output are also compared. Preliminary results indicate that watersheds exhibiting higher proportions of runoff in streamflow are more vulnerable to changes in flood risk. The delta change method appears to be more useful when simulating extreme events as it better preserves daily climate variability as opposed to using bias corrected GCM output.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.
Resumo:
The damage Hurricane Sandy caused had far-reaching repercussions up and down the East Coast of the United States. Vast coastal flooding accompanied the storm, inundating homes, businesses, and utility and emergency facilities. Since the storm, projects to mitigate similar future floods have been scrutinized. Such projects not only need to keep out floodwaters but also be designed to withstand the effect that climate change might have on rising sea levels and increased flood risk. In this study, we develop an economic model to assess the costs and benefits of a berm (sea wall) to mitigate the effects of flooding from a large storm. We account for the lifecycle costs of the project, which include those for the upfront construction of the berm, ongoing maintenance, land acquisition, and wetland and recreation zone construction. Benefits of the project include avoided fatalities, avoided residential and commercial damages, avoided utility and municipal damages, recreational and health benefits, avoided debris removal expenses, and avoided loss of function of key transportation and commercial infrastructure located in the area. Our estimate of the beneficial effects of the berm includes ecosystem services from wetlands and health benefits to the surrounding community from a park and nature system constructed along the berm. To account for the effects of climate change and verify that the project will maintain its effectiveness over the long term, we allow the risk of flooding to increase over time. Over our 50-year time horizon, we double the risk of 100- and 500-year flood events to account for the effects of sea level rise on coastal flooding. Based on the economic analysis, the project is highly cost beneficial over its 50-year timeframe. This analysis demonstrates that climate change adaptation investments can be cost beneficial even though they mitigate the impacts of low-probability, high-consequence events.
Resumo:
The East Asian Monsoon (EAM) is an active component of the global climate system and has a profound social and economic impact in East Asia and its surrounding countries. Its impact on regional hydrological processes may influence society through industrial water supplies, food productivity and energy use. In order to predict future rates of climate change, reliable and accurate reconstructions of regional temperature and rainfall are required from all over the world to test climate models and better predict future climate variability. Hokkaido is a region which has limited palaeo-climate data and is sensitive to climate change. Instrumental data show that the climate in Hokkaido is influenced by the East Asian Monsoon (EAM), however, instrumental data is limited to the past ~150 years. Therefore down-core climate reconstructions, prior to instrumental records, are required to provide a better understanding of the long-term behaviour of the climate drivers (e.g. the EAM, Westerlies, and teleconnections) in this region. The present study develops multi-proxy reconstructions to determine past climatic and hydrologic variability in Japan over the past 1000 years and aid in understanding the effects of the EAM and the Westerlies independently and interactively. A 250-cm long sediment core from Lake Toyoni, Hokkaido was retrieved to investigate terrestrial and aquatic input, lake temperature and hydrological changes over the past 1000-years within Lake Toyoni and its catchment using X-Ray Fluorescence (XRF) data, alkenone palaeothermometry, the molecular and hydrogen isotopic composition of higher plant waxes (δD(HPW)). Here, we conducted the first survey for alkenone biomarkers in eight lakes in the Hokkaido, Japan. We detected the occurrence of alkenones within the sediments of Lake Toyoni. We present the first lacustrine alkenone record from Japan, including genetic analysis of the alkenone producer. C37 alkenone concentrations in surface sediments are 18µg C37 g−1 of dry sediment and the dominant alkenone is C37:4. 18S rDNA analysis revealed the presence of a single alkenone producer in Lake Toyoni and thus a single calibration is used for reconstructing lake temperature based on alkenone unsaturation patterns. Temperature reconstructions over the past 1000 years suggest that lake water temperatures varies between 8 and 19°C which is in line with water temperature changes observed in the modern Lake Toyoni. The alkenone-based temperature reconstruction provides evidence for the variability of the EAM over the past 1000 years. The δD(HPW) suggest that the large fluctuations (∼40‰) represent changes in temperature and source precipitation in this region, which is ultimately controlled by the EAM system and therefore a proxy for the EAM system. In order to complement the biomarker reconstructions, the XRF data strengthen the lake temperature and hydrological reconstructions by providing information on past productivity, which is controlled by the East Asian Summer monsoon (EASM) and wind input into Lake Toyoni, which is controlled by the East Asian Winter Monsoon (EAWM) and the Westerlies. By combining the data generated from XRF, alkenone palaeothermometry and the δD(HPW) reconstructions, we provide valuable information on the EAM and the Westerlies, including; the timing of intensification and weakening, the teleconnections influencing them and the relationship between them. During the Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM was suppressed, whereas, during the Little Ice Age (LIA), the influence of the EAWM dominated with time periods of increased EASM and Westerlies intensification. The El Niño Southern Oscillation (ENSO) significantly influenced the EAM; a strong EASM occurred during El Niño conditions and a strong EAWM occurred during La Niña. The North Atlantic Oscillation, on the other hand, was a key driver of the Westerlies intensification; strengthening of the Westerlies during a positive NAO phase and weakening of the Westerlies during a negative NAO phase. A key finding from this study is that our data support an anti-phase relationship between the EASM and the EAWM (e.g. the intensification of the EASM and weakening of the EAWM and vice versa) and that the EAWM and the Westerlies vary independently from each other, rather than coincide as previously suggested in other studies.
Resumo:
In recent years, haying has extended to Iberian Mediterranean dry grasslands potentially impacting on grassland bird ecology. We evaluated the impact of haying on a grassland bird community of South Portugal. Our main goals were: (1) to investigate the exposure of different species to haying, (2) to investigate potential removal of nests and dead birds from hayed fields by haying machinery using the ratio (REC) between the expected number of records and the number of records collected and (3) to link clutch destruction and bird mortality with haying management practices. Hayed fields were surveyed for signs of breeding and birds censused prior to mowing. Linear models were computed, linking the REC with haying machinery and sward properties. GLMs and model averaging were used to obtain models linking clutch destruction, bird mortality and haying management variables. Only 4 % of records evidenced successful nesting attempts (N = 177). REC evaluation suggested high nest or dead bird removal by the machinery, particularly in fields with lower vegetation biomass prior to cutting. Sickle bar mowers and one-rotor rotary rakes returned higher REC but lower probability of found nests removed from the original nesting sites comparatively to discs mowers and wheel rakes. Higher probabilities of mortality events were found in fields mown earlier (but not in all years). On the other hand, lower mortality was found in fields raked with two-rotor rotary rakes. Delayed haying, silage production in temporary crops and the use haying machinery enabling simultaneously mowing and gathering hay in lines are discussed as management alternatives.