994 resultados para didactic interactions
Resumo:
This research project focuses on contemporary eagle-taming falconry practice of the Altaic Kazakhs animal herding society in Bayan Ulgii Province in Western Mongolia. It aims to contributing both theoretical and empirical criteria for cultural preservation of Asian falconry. This cultural as well as environmental discourse is illustrated with concentrated field research framed by ecological anthropology and ethno-ornithology from the viewpoint of “Human-Animal Interaction (HAI)” and “Human-Animal Behavior (HAB)”. Part I (Chapter 2 & 3) explores ethno-archaeological and ethno-ornithological dimensions by interpretive research of archaeological artefacts which trace the historical depth of Asian falconry culture. Part II (Chapter 4 & 5) provides an extensive ethnographic narrative of Altaic Kazakh falconry, which is the central part of this research project. The “Traditional Art and Knowledge (TAK)” in human-raptor interactions, comprising the entire cycle of capture, perch, feeding, training, hunting, and release, is presented with specific emphasis on its relation to environmental and societal context. Traditional falconry as integral part of a nomadic lifestyle has to face some critical problems nowadays which necessitate preventing the complete disappearance of this outstanding indigenous cultural heritage. Part III (Chapter 6 & 7) thus focuses on the cultural sustainability of Altaic Kazakh falconry. Changing livelihoods, sedentarisation, and decontextualisation are identified as major threats. The role of Golden Eagle Festivals is critically analysed with regard to positive and negative impact. This part also intends to contribute to the academic definition of eagle falconry as an intangible cultural heritage, and to provide scientific criteria for a preservation master plan, as well as stipulate local resilience by pointing to successive actions needed for conservation. This research project concludes that cultural sustainability of Altaic Kazakh falconry needs to be supported from the angles of three theoretical frameworks; (1) Cultural affairs for protection based on the concept of nature-guardianship in its cultural domain, (2) Sustainable development and improvement of animal herding productivity and herder’s livelihood, (3) Natural resource management, especially supporting the population of Golden Eagles, their potential prey animals, and their nesting environment.
Resumo:
The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.
Resumo:
La obra se presenta en edición bilingue español/inglés .- Incluye una sección de apéndices en la que aparecen tablas y gráficos que recogen datos estadísticos sobre la experiencia didáctica, así como información general sobre la UE
Resumo:
This thesis presents the development of hardware, theory, and experimental methods to enable a robotic manipulator arm to interact with soils and estimate soil properties from interaction forces. Unlike the majority of robotic systems interacting with soil, our objective is parameter estimation, not excavation. To this end, we design our manipulator with a flat plate for easy modeling of interactions. By using a flat plate, we take advantage of the wealth of research on the similar problem of earth pressure on retaining walls. There are a number of existing earth pressure models. These models typically provide estimates of force which are in uncertain relation to the true force. A recent technique, known as numerical limit analysis, provides upper and lower bounds on the true force. Predictions from the numerical limit analysis technique are shown to be in good agreement with other accepted models. Experimental methods for plate insertion, soil-tool interface friction estimation, and control of applied forces on the soil are presented. In addition, a novel graphical technique for inverting the soil models is developed, which is an improvement over standard nonlinear optimization. This graphical technique utilizes the uncertainties associated with each set of force measurements to obtain all possible parameters which could have produced the measured forces. The system is tested on three cohesionless soils, two in a loose state and one in a loose and dense state. The results are compared with friction angles obtained from direct shear tests. The results highlight a number of key points. Common assumptions are made in soil modeling. Most notably, the Mohr-Coulomb failure law and perfectly plastic behavior. In the direct shear tests, a marked dependence of friction angle on the normal stress at low stresses is found. This has ramifications for any study of friction done at low stresses. In addition, gradual failures are often observed for vertical tools and tools inclined away from the direction of motion. After accounting for the change in friction angle at low stresses, the results show good agreement with the direct shear values.
Resumo:
The processes underlying the perceptual analysis of visual form are believed to have minimal interaction with those subserving the perception of visual motion (Livingstone and Hubel, 1987; Victor and Conte, 1990). Recent reports of functionally and anatomically segregated parallel streams in the primate visual cortex seem to support this hypothesis (Ungerlieder and Mishkin, 1982; VanEssen and Maunsell, 1983; Shipp and Zeki, 1985; Zeki and Shipp, 1988; De Yoe et al., 1994). Here we present perceptual evidence that is at odds with this view and instead suggests strong symmetric interactions between the form and motion processes. In one direction, we show that the introduction of specific static figural elements, say 'F', in a simple motion sequence biases an observer to perceive a particular motion field, say 'M'. In the reverse direction, the imposition of the same motion field 'M' on the original sequence leads the observer to perceive illusory static figural elements 'F'. A specific implication of these findings concerns the possible existence of (what we call) motion end-stopped units in the primate visual system. Such units might constitute part of a mechanism for signalling subjective occluding contours based on motion-field discontinuities.
Resumo:
Two contrasting case studies of sediment and detrital mineral composition are investigated in order to outline interactions between chemical composition and grain size. Modern glacial sediments exhibit a strong dependence of the two parameters due to the preferential enrichment of mafic minerals, especially biotite, in the fine-grained fractions. On the other hand, the composition of detrital heavy minerals (here: rutile) appears to be not systematically related to grain-size, but is strongly controlled by location, i.e. the petrology of the source rocks of detrital grains. This supports the use of rutile as a well-suited tracer mineral for provenance studies. The results further suggest that (i) interpretations derived from whole-rock sediment geochemistry should be flanked by grain-size observations, and (ii) a more sound statistical evaluation of these interactions require the development of new tailor-made statistical tools to deal with such so-called two-way compositions
Resumo:
Resumen tomado de la publicaci??n
Resumo:
La monografía presenta la auto-organización sociopolítica como la mejor manera de lograr patrones organizados en los sistemas sociales humanos, dada su naturaleza compleja y la imposibilidad de las tareas computacionales de los regímenes políticos clásico, debido a que operan con control jerárquico, el cual ha demostrado no ser óptimo en la producción de orden en los sistemas sociales humanos. En la monografía se extrapola la teoría de la auto-organización en los sistemas biológicos a las dinámicas sociopolíticas humanas, buscando maneras óptimas de organizarlas, y se afirma que redes complejas anárquicas son la estructura emergente de la auto-organización sociopolítica.
Resumo:
As ubiquitous systems have moved out of the lab and into the world the need to think more systematically about how there are realised has grown. This talk will present intradisciplinary work I have been engaged in with other computing colleagues on how we might develop more formal models and understanding of ubiquitous computing systems. The formal modelling of computing systems has proved valuable in areas as diverse as reliability, security and robustness. However, the emergence of ubiquitous computing raises new challenges for formal modelling due to their contextual nature and dependence on unreliable sensing systems. In this work we undertook an exploration of modelling an example ubiquitous system called the Savannah game using the approach of bigraphical rewriting systems. This required an unusual intra-disciplinary dialogue between formal computing and human- computer interaction researchers to model systematically four perspectives on Savannah: computational, physical, human and technical. Each perspective in turn drew upon a range of different modelling traditions. For example, the human perspective built upon previous work on proxemics, which uses physical distance as a means to understand interaction. In this talk I hope to show how our model explains observed inconsistencies in Savannah and ex- tend it to resolve these. I will then reflect on the need for intradisciplinary work of this form and the importance of the bigraph diagrammatic form to support this form of engagement. Speaker Biography Tom Rodden Tom Rodden (rodden.info) is a Professor of Interactive Computing at the University of Nottingham. His research brings together a range of human and technical disciplines, technologies and techniques to tackle the human, social, ethical and technical challenges involved in ubiquitous computing and the increasing used of personal data. He leads the Mixed Reality Laboratory (www.mrl.nott.ac.uk) an interdisciplinary research facility that is home of a team of over 40 researchers. He founded and currently co-directs the Horizon Digital Economy Research Institute (www.horizon.ac.uk), a university wide interdisciplinary research centre focusing on ethical use of our growing digital footprint. He has previously directed the EPSRC Equator IRC (www.equator.ac.uk) a national interdisciplinary research collaboration exploring the place of digital interaction in our everyday world. He is a fellow of the British Computer Society and the ACM and was elected to the ACM SIGCHI Academy in 2009 (http://www.sigchi.org/about/awards/).
Resumo:
In populational sampling it is vitally important to clarify and discern: first, the design or sampling method used to solve the research problem; second, the sampling size, taking into account different components (precision, reliability, variance); third, random selection and fourth, the precision estimate (sampling errors), so as to determine if it is possible to infer the obtained estimates from the target population. The existing difficulty to use concepts from the sampling theory is to understand them with absolute clarity and, to achieve it, the help from didactic-pedagogical strategies arranged as conceptual “mentefactos” (simple hierarchic diagrams organized from propositions) may prove useful. This paper presents the conceptual definition, through conceptual “mentefactos”, of the most important populational probabilistic sampling concepts, in order to obtain representative samples from populations in health research.
Resumo:
Usando datos georreferenciados sobre mercado laboral para la ciudad de Bogotá, se desarrolla una estrategia empírica para identificar el efecto de la tasa de informalidad en el vecindario sobre la probabilidad individual de conseguir un trabajo informal. Se encuentra evidencia de la existencia de tales efectos del vecindario. Estos efectos funcionan de forma distinta para informalidad de trabajadores asalariados o independientes.
Resumo:
Resumen de la revista
Resumo:
Resumen tomado de la publicación
Resumo:
Trabajo realizado por el Seminario Permanente de Inglés, compuesto por 14 profesores durante tres cursos académicos (95/96, 96/97, 97/98) y coordinado por los autores mencionados