832 resultados para databases and data mining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-bred cow adoption is an important and potent policy variable precipitating subsistence household entry into emerging milk markets. This paper focuses on the problem of designing policies that encourage and sustain milkmarket expansion among a sample of subsistence households in the Ethiopian highlands. In this context it is desirable to measure households’ ‘proximity’ to market in terms of the level of deficiency of essential inputs. This problem is compounded by four factors. One is the existence of cross-bred cow numbers (count data) as an important, endogenous decision by the household; second is the lack of a multivariate generalization of the Poisson regression model; third is the censored nature of the milk sales data (sales from non-participating households are, essentially, censored at zero); and fourth is an important simultaneity that exists between the decision to adopt a cross-bred cow, the decision about how much milk to produce, the decision about how much milk to consume and the decision to market that milk which is produced but not consumed internally by the household. Routine application of Gibbs sampling and data augmentation overcome these problems in a relatively straightforward manner. We model the count data from two sites close to Addis Ababa in a latent, categorical-variable setting with known bin boundaries. The single-equation model is then extended to a multivariate system that accommodates the covariance between crossbred-cow adoption, milk-output, and milk-sales equations. The latent-variable procedure proves tractable in extension to the multivariate setting and provides important information for policy formation in emerging-market settings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platelets in the circulation are triggered by vascular damage to activate, aggregate and form a thrombus that prevents excessive blood loss. Platelet activation is stringently regulated by intracellular signalling cascades, which when activated inappropriately lead to myocardial infarction and stroke. Strategies to address platelet dysfunction have included proteomics approaches which have lead to the discovery of a number of novel regulatory proteins of potential therapeutic value. Global analysis of platelet proteomes may enhance the outcome of these studies by arranging this information in a contextual manner that recapitulates established signalling complexes and predicts novel regulatory processes. Platelet signalling networks have already begun to be exploited with interrogation of protein datasets using in silico methodologies that locate functionally feasible protein clusters for subsequent biochemical validation. Characterization of these biological systems through analysis of spatial and temporal organization of component proteins is developing alongside advances in the proteomics field. This focused review highlights advances in platelet proteomics data mining approaches that complement the emerging systems biology field. We have also highlighted nucleated cell types as key examples that can inform platelet research. Therapeutic translation of these modern approaches to understanding platelet regulatory mechanisms will enable the development of novel anti-thrombotic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Objectives Data from intervention studies suggest a beneficial effect of flavanols on vascular health. However, insufficient data on their intake have delayed the assessment of their health benefits. The aim of this study was to estimate intake of flavanols and their main sources among people living in Germany. Subjects/Methods Data from diet history interviews of the German National Nutrition Survey II for 15,371 people across Germany aged 14–80 years were analyzed. The FLAVIOLA Flavanol Food Composition Database was compiled using the latest US Department of Agriculture and Phenol-Explorer Databases and expanded to include recipes and retention factors. Results Mean intake of total flavanols, flavan-3-ol monomers, proanthocyanidins (PA), and theaflavins in Germany was 386, 120, 196, and 70 mg/day, respectively. Women had higher intakes of total flavanols (399 mg/day) than men (372 mg/day) in all age groups, with the exception of the elderly. Similar results were observed for monomers (108 mg/day for men, 131 mg/day for women) and PA (190 mg/day; 203 mg/day), although intake of theaflavins was higher in men (74 mg/day; 66 mg/day). There was an age gradient with an increase in total flavanols, monomers, and theaflavins across the age groups. The major contributor of total flavanols in all subjects was pome fruits (27 %) followed by black tea (25 %). Conclusions This study demonstrated age- and sex-related variations in the intake and sources of dietary flavanols in Germany. The current analysis will provide a valuable tool in clarifying and confirming the potential health benefits of flavanols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artisanal miners have tended to be portrayed in the literature and media as people who work hard and play hard, not infrequently depicted as ‘rough diamonds’ likely to cross the boundaries of appropriate behaviour through pursuit of wealth and flamboyant living, often at the cost of local environmental damage. A popular alternative image is that of marginalised labourers, driven by poverty to toil in harsh conditions and pursuing mining livelihoods in the face of national governments and large-scale mining companies’ subversion of their land and mineral rights. Both views reflect partial realities, but are inclined to exaggerate the position of miners as mischief-making rogues or victims. Through documentation of the multi-faceted nature of Tanzanian artisanal miners’ work and home lives during the country’s on-going economic mineralisation, we endeavour to convey a balanced rendering of their aspirations, occupational identity and social ties. Our emphasis is on their working lives as artisans, how they organise themselves and contend with the risks of their occupation, including their engagement with government policy and large-scale mining interests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines the marginal position of artisanal miners in sub-Saharan Africa, and considers how they are incorporated into mineral sector change in the context of institutional and legal integration. Taking the case of diamond and gold mining in Tanzania, the concept of social exclusion is used to explore the consequences of marginalization on people's access to mineral resources and ability to make a living from artisanal mining. Because existing inequalities and forms of discrimination are ignored by the Tanzanian state, the institutionalization of mineral titles conceals social and power relations that perpetuate highly unequal access to resources. The article highlights the complexity of these processes, and shows that while legal integration can benefit certain wealthier categories of people, who fit into the model of an 'entrepreneurial small-scale miner', for others adverse incorporation contributes to socio-economic dependence, exploitation and insecurity. For the issue of marginality to be addressed within integration processes, the existence of local forms of organization, institutions and relationships, which underpin inequalities and discrimination, need to be recognized.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the relationship between research data management (RDM) and data sharing in the formulation of RDM policies and development of practices in higher education institutions (HEIs). Design/methodology/approach: Two strands of work were undertaken sequentially: firstly, content analysis of 37 RDM policies from UK HEIs; secondly, two detailed case studies of institutions with different approaches to RDM based on semi-structured interviews with staff involved in the development of RDM policy and services. The data are interpreted using insights from Actor Network Theory. Findings: RDM policy formation and service development has created a complex set of networks within and beyond institutions involving different professional groups with widely varying priorities shaping activities. Data sharing is considered an important activity in the policies and services of HEIs studied, but its prominence can in most cases be attributed to the positions adopted by large research funders. Research limitations/implications: The case studies, as research based on qualitative data, cannot be assumed to be universally applicable but do illustrate a variety of issues and challenges experienced more generally, particularly in the UK. Practical implications: The research may help to inform development of policy and practice in RDM in HEIs and funder organisations. Originality/value: This paper makes an early contribution to the RDM literature on the specific topic of the relationship between RDM policy and services, and openness – a topic which to date has received limited attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an interdisciplinary perspective on mine reclamation in forested areas of Ghana, a country characterised by conflicts between mining and forest conservation. A comparison was made between above ground biomass (AGB) and soil organic carbon (SOC) content from two reclaimed mine sites and adjacent undisturbed forest. Findings suggest that on decadal timescales, reclaimed mine sites contain approximately 40% of the total carbon and 10% the AGB carbon of undisturbed forest. This raises questions regarding the potential for decommissioning mine sites to provide forestry-based legacies. Such a move could deliver a host of benefits, including improving the longevity and success of reclamation, mitigating climate change and delivering corollary enumeration for local communities under carbon trading schemes. A discussion of the antecedents and challenges associated with establishing forest-legacies highlights the risk of neglecting the participation and heterogeneity of legitimate local representatives, which threatens the equity of potential benefits and sustainability of projects. Despite these risks, implementing pilot projects could help to address the lack of transparency and data which currently characterises mine reclamation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.