976 resultados para cyclic K48-linked di-ubiquitin
Resumo:
The extraction of trivalent rare earths ( RE) from nitrate solutions with di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) and synergistic extraction combined with 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPMBP, HA) were investigated. The extraction distribution ratios demonstrate a distinct "tetra effect," and Y lies between Tb and Dy when DEHEHP is used as a single extractant for RE. According to the corresponding separation factors (SF12) for adjacent pairs of rare earths, it could be concluded that DEHEHP could be employed for the separation of La from the other rare earths, and Y from light rare earths. The present work has also found that mixtures of HPMBP and DEHEHP have an evident synergistic effect for RE(III). Taking Y( III) as an example, a possible synergistic extraction mechanism is proposed. The enhancement of extraction in the binary system can be explained due to the species Y(NO3) (.) A(2) (.) HA (.) B formed. The synergistic enhancement coefficients ( R), extraction constants, formation constants and thermodynamic functions of the reaction were calculated.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
The title compound, {[Mn-2(CH3CO2)(4)(C10H8N2)(2)](H2O)-H-.}(n), is a one-dimensional coordination polymer with a ladder-like structure. Two Mn-II atoms, each coordinated by a chelating acetate ligand, are bridged by two bidentate acetate ligands to form a centrosymmetric [Mn-2(CH3CO2)(4)] unit. Two 4,4'-bipyridine ligands link the [Mn-2(CH3CO2)(4)] units through Mn-N bonds to generate a molecular ladder. The water O atom lies on a crystallographic twofold rotation axis.
Resumo:
Catalytic reactions with different oxidation process were investigated and correlated to the electrochemical properties of the catalysts. The activity of suprafacial reaction is closely related to the area of redox peak, while that of the intrafacial one is to the match of redox potentials. Accordingly, it is supposed that cyclic voltammetry (CV) measurement could be a means for predicting the oxidation process in heterogeneous catalysis.
Resumo:
The self-assembly of poly(di-n-butylsilane) (PDBS) and poly(di-n-hexylsilane) (PDHS) on the surfaces of amorphous carbon and highly oriented pyrolytic graphite (HOPG) have been investigated, respectively. The morphology and structures of these self-assembled thin films were studied by using atomic force microscopy, transmission electronic microscopy, and wide-angle X-ray diffraction. In the case of weak van der Waals interactions between absorbed molecules and substrate, i.e., on amorphous carbon, the self-assembly process was driven by absorbate-absorbate intermolecular interactions. For PDBS with weak absorbate-absorbate intermolecular interactions, the thin film showed organization lacking any measurable preferred orientation on the surface of amorphous carbon. While for PDHS with rigid backbone and strong intermolecular interactions, flat-on lamellae with silicon backbones perpendicular to the surface of amorphous carbon were formed. However, in the case of strong van der Waals interactions between absorbed molecules and substrate, i.e., on HOPG, the self-assembly process was tailored by the balance of absorbate-absorbate intermolecular interactions and molecule-substrate interactions. Both PDHS and PDBS thin films grew into edge-on lamellae on the surface of HOPG, which aligned according to a Mold symmetry.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
In this paper, 4-ferrocene thiophenol was employed as a novel capping agent to synthesize electroactive gold nanoparticles. Transmission electron microscopy showed an average core diameter of 2.5 nm. The optical and electrochemical properties of the 4-ferrocene thiophenol capped gold nanoparticles were characterized by UV-Vis spectroscopy and cyclic voltammograms. Surface plasmon absorbance was detected at 522 nm. Cyclic voltammograms revealed the adsorbed layer reaction controlled electrode process, and the formal potential of electroactive ferrocene centers shifted anodically compared with ferrocene in solution, which could be attributed to the electron-withdrawing phenyl moiety linked to ferrocene.
Resumo:
A cyclic aryl thioester dimer was prepared by the reaction of o-phthaloyl dichloride and his (4-mercaptophenyl) sulfide in good yield under pseudo-high dilution conditions via interfacial polycondensation. The structure of the cyclic dimer was confirmed by a combination of MALDI-TOF-MS, FTIR, gel permeation chromatography and MM analyses. The X-ray diffraction study of the single crystal of cyclic thioester dimer obtained from two solutions reveals no severe internal strain on the cyclic structure.
Resumo:
Silver underpotential deposition (UPD)-induced surface atomic rearrangement of polycrystalline gold nanofilms was probed with use of surface plasmon resonance spectroscopy (SPRs) as a novel probe tool in combination with cyclic voltammetry. Interestingly, upon repetitive electrochemical UPD and stripping of Ag, the surface structure of the resulting bare Au film is rearranged due to strong adatom-substrate interactions, which causes a large angle shift of SPR R-theta curves, in a good linear relationship with the number of UPDs, to a lower SPR angle. The n, K values of the surfacial Au monolayers before and after the repetitive Ag UPD and stripping for 27 times are found to be 0.133, 3.60 and 0.565, 9.39, respectively, corresponding to the huge shift of 1.61degrees to the left of the SPR minima. Cyclic voltammetry experiments in 0.10 M H2SO4 are carried out before and after the UPD treatment to examine the quality of the whole electrode surface and confirmed this change. To correlate the angle change in SPRs with the profile change in the cyclic voltammogram, the UPD treatment was also performed on a Au(111) textured thin film. It was therefore confirmed that the resonance position of the SPR spectrum is very sensitive to the surface crystallographic orientation of the bare Au substrates. Some surface atomic rearrangement can cause a pronounced SPR angle shift.
Resumo:
Facilitated ion transfer reactions of 20 amino acids with di.benzo-18-crown-6 (DB18C6) at the water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nano-pipets were investigated systematically using cyclic voltammetry. It was found that there were only 10 amino acids, that is, Leu, Val, Ile, Phe, Trp, Met, Ala, Gly, Cys, Gln (in brief), whose protonated forms as cations can give well-defined facilitated ion transfer voltammograms within the potential window, and the reaction pathway was proven to be consistent with the transfer by interfacial complexation/dissociation (TIC/TID) mechanisms. The association constants of DB 18C6 with different amino acids in the DCE (beta(0)), and the kinetic parameters of reaction were evaluated based on the steady-state voltammetry of micro- or nano-pipets, respectively The experimental results demonstrated that the selectivity of complexation of protonated amino acid by DB18C6 compared with that of alkali metal cations was low, which can be attributed to the vicinal effect arising from steric hindrance introduced by their side group and the steric bulk effect by lipophilic stabilization.
Resumo:
An amino isopropoxyl strontium (Sr-PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring-opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA). The Sr-PO initiator demonstrated an effective initiating activity for the ROP of epsilon-caprolactone (epsilon-CL) and L-lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr-PO initiator. Block copolymer PCL-b-PLLA was prepared by sequential polymerization of epsilon-CL and LLA, which was demonstrated by H-1 NMR, C-13 NMR, and gel permeation chromatography. The chemical structure of Sr-PO initiator was confirmed by elemental analysis of Sr and N, H-1 NMR analysis of the end groups in epsilon-CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr-PO initiator and model monomer gamma-butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination-insertion mechanism, and cyclic esters exclusively inserted into the Sr-O bond.
Resumo:
The iododecarboxylation reaction of alpha-carboxylate, alpha-cinnamoyl ketene cyclic dithioacetals 2 was successfully performed with iodine as halogenation reagent and in water insensitive media. This reaction provides a mild and efficient method for the preparation of alpha-iodo, alpha-cinnamoyl ketene cyclic dithioacetals 3 which are important kinds of potential new intermediates to be valued.
Resumo:
Novel hybrid thin films covalently doped with Eu3+ (Tb3+) have been prepared via direct routes involving co-condensation of tetraethoxysilane and phen-Si in the presence of Eu3+ (Tb3+) by spin-casting and their luminescence properties have been investigated in detail. Lanthanide ions can be sensitized by anchored phenanthroline in hybrid thin films. Excitation at the ligand absorption wavelength (272 nm) resulted in the strong emission of the lanthanide ions i.e. Eu3+ D-5(0)-F-7(J) (J=0, 1, 2, 3, 4) emission lines and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) due to the energy transfer from the ligands to the lanthanide ions.
Resumo:
Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.