815 resultados para critic of critical theory
Resumo:
Le travail d'un(e) expert(e) en science forensique exige que ce dernier (cette dernière) prenne une série de décisions. Ces décisions sont difficiles parce qu'elles doivent être prises dans l'inévitable présence d'incertitude, dans le contexte unique des circonstances qui entourent la décision, et, parfois, parce qu'elles sont complexes suite à de nombreuse variables aléatoires et dépendantes les unes des autres. Etant donné que ces décisions peuvent aboutir à des conséquences sérieuses dans l'administration de la justice, la prise de décisions en science forensique devrait être soutenue par un cadre robuste qui fait des inférences en présence d'incertitudes et des décisions sur la base de ces inférences. L'objectif de cette thèse est de répondre à ce besoin en présentant un cadre théorique pour faire des choix rationnels dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. L'inférence et la théorie de la décision bayésienne satisfont les conditions nécessaires pour un tel cadre théorique. Pour atteindre son objectif, cette thèse consiste de trois propositions, recommandant l'utilisation (1) de la théorie de la décision, (2) des réseaux bayésiens, et (3) des réseaux bayésiens de décision pour gérer des problèmes d'inférence et de décision forensiques. Les résultats présentent un cadre uniforme et cohérent pour faire des inférences et des décisions en science forensique qui utilise les concepts théoriques ci-dessus. Ils décrivent comment organiser chaque type de problème en le décomposant dans ses différents éléments, et comment trouver le meilleur plan d'action en faisant la distinction entre des problèmes de décision en une étape et des problèmes de décision en deux étapes et en y appliquant le principe de la maximisation de l'utilité espérée. Pour illustrer l'application de ce cadre à des problèmes rencontrés par les experts dans un laboratoire de science forensique, des études de cas théoriques appliquent la théorie de la décision, les réseaux bayésiens et les réseaux bayésiens de décision à une sélection de différents types de problèmes d'inférence et de décision impliquant différentes catégories de traces. Deux études du problème des deux traces illustrent comment la construction de réseaux bayésiens permet de gérer des problèmes d'inférence complexes, et ainsi surmonter l'obstacle de la complexité qui peut être présent dans des problèmes de décision. Trois études-une sur ce qu'il faut conclure d'une recherche dans une banque de données qui fournit exactement une correspondance, une sur quel génotype il faut rechercher dans une banque de données sur la base des observations faites sur des résultats de profilage d'ADN, et une sur s'il faut soumettre une trace digitale à un processus qui compare la trace avec des empreintes de sources potentielles-expliquent l'application de la théorie de la décision et des réseaux bayésiens de décision à chacune de ces décisions. Les résultats des études des cas théoriques soutiennent les trois propositions avancées dans cette thèse. Ainsi, cette thèse présente un cadre uniforme pour organiser et trouver le plan d'action le plus rationnel dans des problèmes de décisions rencontrés par les experts dans un laboratoire de science forensique. Le cadre proposé est un outil interactif et exploratoire qui permet de mieux comprendre un problème de décision afin que cette compréhension puisse aboutir à des choix qui sont mieux informés. - Forensic science casework involves making a sériés of choices. The difficulty in making these choices lies in the inévitable presence of uncertainty, the unique context of circumstances surrounding each décision and, in some cases, the complexity due to numerous, interrelated random variables. Given that these décisions can lead to serious conséquences in the admin-istration of justice, forensic décision making should be supported by a robust framework that makes inferences under uncertainty and décisions based on these inferences. The objective of this thesis is to respond to this need by presenting a framework for making rational choices in décision problems encountered by scientists in forensic science laboratories. Bayesian inference and décision theory meets the requirements for such a framework. To attain its objective, this thesis consists of three propositions, advocating the use of (1) décision theory, (2) Bayesian networks, and (3) influence diagrams for handling forensic inference and décision problems. The results present a uniform and coherent framework for making inferences and décisions in forensic science using the above theoretical concepts. They describe how to organize each type of problem by breaking it down into its différent elements, and how to find the most rational course of action by distinguishing between one-stage and two-stage décision problems and applying the principle of expected utility maximization. To illustrate the framework's application to the problems encountered by scientists in forensic science laboratories, theoretical case studies apply décision theory, Bayesian net-works and influence diagrams to a selection of différent types of inference and décision problems dealing with différent catégories of trace evidence. Two studies of the two-trace problem illustrate how the construction of Bayesian networks can handle complex inference problems, and thus overcome the hurdle of complexity that can be present in décision prob-lems. Three studies-one on what to conclude when a database search provides exactly one hit, one on what genotype to search for in a database based on the observations made on DNA typing results, and one on whether to submit a fingermark to the process of comparing it with prints of its potential sources-explain the application of décision theory and influ¬ence diagrams to each of these décisions. The results of the theoretical case studies support the thesis's three propositions. Hence, this thesis présents a uniform framework for organizing and finding the most rational course of action in décision problems encountered by scientists in forensic science laboratories. The proposed framework is an interactive and exploratory tool for better understanding a décision problem so that this understanding may lead to better informed choices.
Resumo:
Although both are fundamental terms in the humanities and social sciences, discourse and knowledge have seldom been explicitly related, and even less so in critical discourse studies. After a brief summary of what we know about these relationships in linguistics, psychology, epistemology and the social sciences, with special emphasis on the role of knowledge in the formation of mental models as a basis for discourse, I examine in more detail how a critical study of discourse and knowledge may be articulated in critical discourse studies. Thus, several areas of critical epistemic discourse analysis are identified, and then applied in a study of Tony Blair’s Iraq speech on March 18, 2003, in which he sought to legitimatize his decision to go to war in Iraq with George Bush. The analysis shows the various modes of how knowledge is managed and manipulated of all levels of discourse of this speech.
Resumo:
In this article, I firstly offer a synthesis of a brief set of analytical elements of the theory of democracy and federalism established in the recent debate which identify a number of flaws in the normative and institutional bases of plurinational democracies. It is necessary to overcome these flaws in order to achieve a true political and constitutional recognition and accommodation of the national pluralism of this kind of liberal democracies (section 1). Secondly, we will focus on the Spanish case of the “Estado de las Autonomías” taking into account the recent reform of the Catalan constitutional law (Estatut d’autonomia 2006) (section 2). A final section makes a number of concluding remarks relating the previously highlighted elements of the theory of democracy and federalism with the analysis of the Catalan case (section 3).
Resumo:
It is commonly found that young people tend to adopt the political party choice of their parents. However, far less is known about the applicability of this theory when investigating radical right support. Using the Swiss Household panel data (1999e2007), this study empirically identifies the relationship between parents' preference for the Swiss radical right party SVP and their attitudes toward immigrants and the EU, and their offspring's preference for the SVP. Disaggregating fathers' and mothers' influence reveals that in particular, mothers' SVP support plays a role in SVP support among young people, even after controlling for educational similarities. We also demonstrate that girls are more likely to be influenced by their mothers than are boys. Furthermore, parents' negative attitudes toward the EU exert a positive influence on their children's radical right voting, independent of their voting pattern.
Resumo:
166 countries have some kind of public old age pension. What economic forces create and sustain old age Social Security as a public program? Mulligan and Sala-i-Martin (1999b) document several of the internationally and historically common features of social security programs, and explore "political" theories of Social Security. This paper discusses the "efficiency theories", which view creation of the SS program as a full of partial solution to some market failure. Efficiency explanations of social security include the "SS as welfare for the elderly" the "retirement increases productivity to optimally manage human capital externalities", "optimal retirement insurance", the "prodigal father problem", the "misguided Keynesian", the "optimal longevity insurance", the "government economizing transaction costs", and the "return on human capital investment". We also analyze four "narrative" theories of social security: the "chain letter theory", the "lump of labor theory", the "monopoly capitalism theory", and the "Sub-but-Nearly-Optimal policy response to private pensions theory". The political and efficiency explanations are compared with the international and historical facts and used to derive implications for replacing the typical pay-as-you-go system with a forced savings plan. Most of the explanations suggest that forced savings does not increase welfare, and may decrease it.
Resumo:
Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.
Resumo:
Abstract The object of game theory lies in the analysis of situations where different social actors have conflicting requirements and where their individual decisions will all influence the global outcome. In this framework, several games have been invented to capture the essence of various dilemmas encountered in many common important socio-economic situations. Even though these games often succeed in helping us understand human or animal behavior in interactive settings, some experiments have shown that people tend to cooperate with each other in situations for which classical game theory strongly recommends them to do the exact opposite. Several mechanisms have been invoked to try to explain the emergence of this unexpected cooperative attitude. Among them, repeated interaction, reputation, and belonging to a recognizable group have often been mentioned. However, the work of Nowak and May (1992) showed that the simple fact of arranging the players according to a spatial structure and only allowing them to interact with their immediate neighbors is sufficient to sustain a certain amount of cooperation even when the game is played anonymously and without repetition. Nowak and May's study and much of the following work was based on regular structures such as two-dimensional grids. Axelrod et al. (2002) showed that by randomizing the choice of neighbors, i.e. by actually giving up a strictly local geographical structure, cooperation can still emerge, provided that the interaction patterns remain stable in time. This is a first step towards a social network structure. However, following pioneering work by sociologists in the sixties such as that of Milgram (1967), in the last few years it has become apparent that many social and biological interaction networks, and even some technological networks, have particular, and partly unexpected, properties that set them apart from regular or random graphs. Among other things, they usually display broad degree distributions, and show small-world topological structure. Roughly speaking, a small-world graph is a network where any individual is relatively close, in terms of social ties, to any other individual, a property also found in random graphs but not in regular lattices. However, in contrast with random graphs, small-world networks also have a certain amount of local structure, as measured, for instance, by a quantity called the clustering coefficient. In the same vein, many real conflicting situations in economy and sociology are not well described neither by a fixed geographical position of the individuals in a regular lattice, nor by a random graph. Furthermore, it is a known fact that network structure can highly influence dynamical phenomena such as the way diseases spread across a population and ideas or information get transmitted. Therefore, in the last decade, research attention has naturally shifted from random and regular graphs towards better models of social interaction structures. The primary goal of this work is to discover whether or not the underlying graph structure of real social networks could give explanations as to why one finds higher levels of cooperation in populations of human beings or animals than what is prescribed by classical game theory. To meet this objective, I start by thoroughly studying a real scientific coauthorship network and showing how it differs from biological or technological networks using divers statistical measurements. Furthermore, I extract and describe its community structure taking into account the intensity of a collaboration. Finally, I investigate the temporal evolution of the network, from its inception to its state at the time of the study in 2006, suggesting also an effective view of it as opposed to a historical one. Thereafter, I combine evolutionary game theory with several network models along with the studied coauthorship network in order to highlight which specific network properties foster cooperation and shed some light on the various mechanisms responsible for the maintenance of this same cooperation. I point out the fact that, to resist defection, cooperators take advantage, whenever possible, of the degree-heterogeneity of social networks and their underlying community structure. Finally, I show that cooperation level and stability depend not only on the game played, but also on the evolutionary dynamic rules used and the individual payoff calculations. Synopsis Le but de la théorie des jeux réside dans l'analyse de situations dans lesquelles différents acteurs sociaux, avec des objectifs souvent conflictuels, doivent individuellement prendre des décisions qui influenceront toutes le résultat global. Dans ce cadre, plusieurs jeux ont été inventés afin de saisir l'essence de divers dilemmes rencontrés dans d'importantes situations socio-économiques. Bien que ces jeux nous permettent souvent de comprendre le comportement d'êtres humains ou d'animaux en interactions, des expériences ont montré que les individus ont parfois tendance à coopérer dans des situations pour lesquelles la théorie classique des jeux prescrit de faire le contraire. Plusieurs mécanismes ont été invoqués pour tenter d'expliquer l'émergence de ce comportement coopératif inattendu. Parmi ceux-ci, la répétition des interactions, la réputation ou encore l'appartenance à des groupes reconnaissables ont souvent été mentionnés. Toutefois, les travaux de Nowak et May (1992) ont montré que le simple fait de disposer les joueurs selon une structure spatiale en leur permettant d'interagir uniquement avec leurs voisins directs est suffisant pour maintenir un certain niveau de coopération même si le jeu est joué de manière anonyme et sans répétitions. L'étude de Nowak et May, ainsi qu'un nombre substantiel de travaux qui ont suivi, étaient basés sur des structures régulières telles que des grilles à deux dimensions. Axelrod et al. (2002) ont montré qu'en randomisant le choix des voisins, i.e. en abandonnant une localisation géographique stricte, la coopération peut malgré tout émerger, pour autant que les schémas d'interactions restent stables au cours du temps. Ceci est un premier pas en direction d'une structure de réseau social. Toutefois, suite aux travaux précurseurs de sociologues des années soixante, tels que ceux de Milgram (1967), il est devenu clair ces dernières années qu'une grande partie des réseaux d'interactions sociaux et biologiques, et même quelques réseaux technologiques, possèdent des propriétés particulières, et partiellement inattendues, qui les distinguent de graphes réguliers ou aléatoires. Entre autres, ils affichent en général une distribution du degré relativement large ainsi qu'une structure de "petit-monde". Grossièrement parlant, un graphe "petit-monde" est un réseau où tout individu se trouve relativement près de tout autre individu en termes de distance sociale, une propriété également présente dans les graphes aléatoires mais absente des grilles régulières. Par contre, les réseaux "petit-monde" ont, contrairement aux graphes aléatoires, une certaine structure de localité, mesurée par exemple par une quantité appelée le "coefficient de clustering". Dans le même esprit, plusieurs situations réelles de conflit en économie et sociologie ne sont pas bien décrites ni par des positions géographiquement fixes des individus en grilles régulières, ni par des graphes aléatoires. De plus, il est bien connu que la structure même d'un réseau peut passablement influencer des phénomènes dynamiques tels que la manière qu'a une maladie de se répandre à travers une population, ou encore la façon dont des idées ou une information s'y propagent. Ainsi, durant cette dernière décennie, l'attention de la recherche s'est tout naturellement déplacée des graphes aléatoires et réguliers vers de meilleurs modèles de structure d'interactions sociales. L'objectif principal de ce travail est de découvrir si la structure sous-jacente de graphe de vrais réseaux sociaux peut fournir des explications quant aux raisons pour lesquelles on trouve, chez certains groupes d'êtres humains ou d'animaux, des niveaux de coopération supérieurs à ce qui est prescrit par la théorie classique des jeux. Dans l'optique d'atteindre ce but, je commence par étudier un véritable réseau de collaborations scientifiques et, en utilisant diverses mesures statistiques, je mets en évidence la manière dont il diffère de réseaux biologiques ou technologiques. De plus, j'extrais et je décris sa structure de communautés en tenant compte de l'intensité d'une collaboration. Finalement, j'examine l'évolution temporelle du réseau depuis son origine jusqu'à son état en 2006, date à laquelle l'étude a été effectuée, en suggérant également une vue effective du réseau par opposition à une vue historique. Par la suite, je combine la théorie évolutionnaire des jeux avec des réseaux comprenant plusieurs modèles et le réseau de collaboration susmentionné, afin de déterminer les propriétés structurelles utiles à la promotion de la coopération et les mécanismes responsables du maintien de celle-ci. Je mets en évidence le fait que, pour ne pas succomber à la défection, les coopérateurs exploitent dans la mesure du possible l'hétérogénéité des réseaux sociaux en termes de degré ainsi que la structure de communautés sous-jacente de ces mêmes réseaux. Finalement, je montre que le niveau de coopération et sa stabilité dépendent non seulement du jeu joué, mais aussi des règles de la dynamique évolutionnaire utilisées et du calcul du bénéfice d'un individu.
Resumo:
Objective to verify the associations between stress, Coping and Presenteeism in nurses operating on direct assistance to critical and potentially critical patients. Method this is a descriptive, cross-sectional and quantitative study, conducted between March and April 2010 with 129 hospital nurses. The Inventory of stress in nurses, Occupational and Coping Questionnaire Range of Limitations at Work were used. For the analysis, the Kolmogorov-Smirnov test, correlation coefficient of Pearson and Spearman, Chi-square and T-test were applied. Results it was observed that 66.7% of the nurses showed low stress, 87.6% use control strategies for coping stress and 4.84% had decrease in productivity. Direct and meaningful relationships between stress and lost productivity were found. Conclusion stress interferes with the daily life of nurses and impacts on productivity. Although the inability to test associations, the control strategy can minimize the stress, which consequently contributes to better productivity of nurses in the care of critical patients and potentially critical.
Resumo:
We present simple procedures for the prediction of a real valued sequence. The algorithms are based on a combinationof several simple predictors. We show that if the sequence is a realization of a bounded stationary and ergodic random process then the average of squared errors converges, almost surely, to that of the optimum, given by the Bayes predictor. We offer an analog result for the prediction of stationary gaussian processes.
Resumo:
This paper explores biases in the elicitation of utilities under risk and the contribution that generalizations of expected utility can make to the resolution of these biases. We used five methods to measure utilities under risk and found clear violations of expected utility. Of the theories studies, prospect theory was most consistent with our data. The main improvement of prospect theory over expected utility was in comparisons between a riskless and a risky prospect(riskless-risk methods). We observed no improvement over expected utility in comparisons between two risky prospects (risk-risk methods). An explanation why we found no improvement of prospect theory over expected utility in risk-risk methods may be that there was less overweighting of small probabilities in our study than has commonly been observed.
Resumo:
We consider the application of normal theory methods to the estimation and testing of a general type of multivariate regressionmodels with errors--in--variables, in the case where various data setsare merged into a single analysis and the observable variables deviatepossibly from normality. The various samples to be merged can differ on the set of observable variables available. We show that there is a convenient way to parameterize the model so that, despite the possiblenon--normality of the data, normal--theory methods yield correct inferencesfor the parameters of interest and for the goodness--of--fit test. Thetheory described encompasses both the functional and structural modelcases, and can be implemented using standard software for structuralequations models, such as LISREL, EQS, LISCOMP, among others. An illustration with Monte Carlo data is presented.
Resumo:
This paper formalizes in a fully-rational model the popular idea that politiciansperceive an electoral cost in adopting costly reforms with future benefits and reconciles it with the evidence that reformist governments are not punished by voters.To do so, it proposes a model of elections where political ability is ex-ante unknownand investment in reforms is unobservable. On the one hand, elections improve accountability and allow to keep well-performing incumbents. On the other, politiciansmake too little reforms in an attempt to signal high ability and increase their reappointment probability. Although in a rational expectation equilibrium voters cannotbe fooled and hence reelection does not depend on reforms, the strategy of underinvesting in reforms is nonetheless sustained by out-of-equilibrium beliefs. Contrary tothe conventional wisdom, uncertainty makes reforms more politically viable and may,under some conditions, increase social welfare. The model is then used to study howpolitical rewards can be set so as to maximize social welfare and the desirability of imposing a one-term limit to governments. The predictions of this theory are consistentwith a number of empirical regularities on the determinants of reforms and reelection.They are also consistent with a new stylized fact documented in this paper: economicuncertainty is associated to more reforms in a panel of 20 OECD countries.
Resumo:
166 countries have some kind of public old age pension. What economic forcescreate and sustain old age Social Security as a public program? Mulligan and Sala-i-Martin (1999b) document several of the internationally and historically common features of social security programs, and explore "political" theories of Social Security. This paper discusses the "efficiency theories", which view creation of the SS program as a full of partial solution to some market failure. Efficiency explanations of social security include the "SS as welfare for the elderly" the "retirement increases productivity to optimally manage human capital externalities", "optimal retirement insurance", the "prodigal father problem", the "misguided Keynesian", the "optimal longevity insurance", the "governmenteconomizing transaction costs", and the "return on human capital investment". We also analyze four "narrative" theories of social security: the "chain letter theory", the "lump of labor theory", the "monopoly capitalism theory", and the "Sub-but-Nearly-Optimal policy response to private pensions theory".The political and efficiency explanations are compared with the international and historical facts and used to derive implications for replacing the typical pay-as-you-go system with a forced savings plan. Most of the explanations suggest that forced savings does not increase welfare, and may decrease it.
Resumo:
Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.
Resumo:
Consider the problem of testing k hypotheses simultaneously. In this paper,we discuss finite and large sample theory of stepdown methods that providecontrol of the familywise error rate (FWE). In order to improve upon theBonferroni method or Holm's (1979) stepdown method, Westfall and Young(1993) make eective use of resampling to construct stepdown methods thatimplicitly estimate the dependence structure of the test statistics. However,their methods depend on an assumption called subset pivotality. The goalof this paper is to construct general stepdown methods that do not requiresuch an assumption. In order to accomplish this, we take a close look atwhat makes stepdown procedures work, and a key component is a monotonicityrequirement of critical values. By imposing such monotonicity on estimatedcritical values (which is not an assumption on the model but an assumptionon the method), it is demonstrated that the problem of constructing a validmultiple test procedure which controls the FWE can be reduced to the problemof contructing a single test which controls the usual probability of a Type 1error. This reduction allows us to draw upon an enormous resamplingliterature as a general means of test contruction.