898 resultados para crash avoidance, path planning, spatial modeling, object tracking
Resumo:
Information about rainfall erosivity is important during soil and water conservation planning. Thus, the spatial variability of rainfall erosivity of the state Mato Grosso do Sul was analyzed using ordinary kriging interpolation. For this, three pluviograph stations were used to obtain the regression equations between the erosivity index and the rainfall coefficient EI30. The equations obtained were applied to 109 pluviometric stations, resulting in EI30 values. These values were analyzed from geostatistical technique, which can be divided into: descriptive statistics, adjust to semivariogram, cross-validation process and implementation of ordinary kriging to generate the erosivity map. Highest erosivity values were found in central and northeast regions of the State, while the lowest values were observed in the southern region. In addition, high annual precipitation values not necessarily produce higher erosivity values.
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
Species distribution models (SDMs) can be useful for different conservation purposes. We discuss the importance of fitting spatial scale and using current records and relevant predictors aiming conservation. We choose jaguar (Panthera onca) as a target species and Brazil and Atlantic Forest biome as study areas. We tested two different extents (continent and biome) and resolutions (similar to 4 Km and similar to 1 Km) in Maxent with 186 records and 11 predictors (bioclimatic, elevation, land-use and landscape structure). All models presented satisfactory AUC values (>0.70) and low omission errors (<23%). SDMs were scale-sensitive as the use of reduced extent implied in significant gains to model performance generating more constrained and real predictive distribution maps. Continental-scale models performed poorly in predicting potential current jaguar distribution, but they reached the historic distribution. Specificity increased significantly from coarse to finer-scale models due to the reduction of overprediction. The variability of environmental space (E-space) differed for most of climatic variables between continental and biome-scale and the representation of the E-space by predictors differed significantly (t = 2.42, g.I. = 9, P < 0.05). Refining spatial scale, incorporating landscape variables and improving the quality of biological data are essential for improving model prediction for conservation purposes.
Resumo:
[EN] [EN] In this paper we present a new method for image primitives tracking based on a CART (Classification and Regression Tree). Primitives tracking procedure uses lines and circles as primitives. We have applied the proposed method to sport event scenarios, specifically, soccer matches. We estimate CART parameters using a learning procedure based on RGB image channels. In order to illustrate its performance, it has been applied to real HD (High Definition) video sequences and some numerical experiments are shown. The quality of the primitives tracking with the decision tree is validated by the percentage error rates obtained and the comparison with other techniques as a morphological method. We also present applications of the proposed method to camera calibration and graphic object insertion in real video sequences.
Resumo:
The experience of void, essential to the production of forms and to make use them, can be considered as the base of the activities that attend to the formative processes. If void and matter constitutes the basic substances of architecture. Their role in the definition of form, the symbolic value and the constructive methods of it defines the quality of the space. This job inquires the character of space in the architecture of Moneo interpreting the meaning of the void in the Basque culture through the reading of the form matrices in the work of Jorge Oteiza and Eduardo Chillida. In the tie with the Basque culture a reading key is characterized by concurring to put in relation some of the theoretical principles expressed by Moneo on the relationship between place and time, in an unique and specific vision of the space. In the analysis of the process that determines the genesis of the architecture of Moneo emerges a trajectory whose direction is constructed on two pivos: on the one hand architecture like instrument of appropriation of the place, gushed from an acquaintance process who leans itself to the reading of the relations that define the place and of the resonances through which measuring it, on the other hand the architecture whose character is able to represent and to extend the time in which he is conceived, through the autonomy that is conferred to them from values. Following the trace characterized from this hypothesis, that is supported on the theories elaborated from Moneo, surveying deepens the reading of the principles that construct the sculptural work of Oteiza and Chillida, features from a search around the topic of the void and to its expression through the form. It is instrumental to the definition of a specific area that concurs to interpret the character of the space subtended to a vision of the place and the time, affine to the sensibility of Moneo and in some way not stranger to its cultural formation. The years of the academic formation, during which Moneo enters in contact with the Basque artistic culture, seem to be an important period in the birth of that knowledge that will leads him to the formulation of theories tied to the relationship between time, place and architecture. The values expressed through the experimental work of Oteiza and Chillida during years '50 are valid bases to the understanding of such relationships. In tracing a profile of the figures of Oteiza and Chillida, without the pretension that it is exhaustive for the reading of the complex historical period in which they are placed, but with the needs to put the work in a context, I want to be evidenced the important role carried out from the two artists from the Basque cultural area within which Moneo moves its first steps. The tie that approaches Moneo to the Basque culture following the personal trajectory of the formative experience interlaces to that one of important figures of the art and the Spanish architecture. One of the more meaningful relationships is born just during the years of his academic formation, from 1958 to the 1961, when he works like student in the professional office of the architect Francisco Sáenz de Oiza, who was teaching architectural design at the ETSAM. In these years many figures of Basque artists alternated at the professional office of Oiza that enjoys the important support of the manufacturer and maecenas Juan Huarte Beaumont, introduced to he from Oteiza. The tie between Huarte and Oteiza is solid and continuous in the years and it realizes in a contribution to many of the initiatives that makes of Oteiza a forwarder of the Basque culture. In the four years of collaboration with Oiza, Moneo has the opportunity to keep in contact with an atmosphere permeated by a constant search in the field of the plastic art and with figures directly connected to such atmosphere. It’s of a period of great intensity as in the production like in the promotion of the Basque art. The collective “Blanco y Negro”, than is held in 1959 at the Galería Darro to Madrid, is only one of the many times of an exhibition of the work of Oteiza and Chillida. The end of the Fifties is a period of international acknowledgment for Chillida that for Oteiza. The decade of the Fifties consecrates the hypotheses of a mythical past of the Basque people through the spread of the studies carried out in the antecedent years. The archaeological discoveries that join to a context already rich of signs of the prehistoric era, consolidate the knowledge of a strong cultural identity. Oteiza, like Chillida and other contemporary artists, believe in a cosmogonist conception belonging to the Basques, connected to their matriarchal mythological past. The void in its meaning of absence, in the Basque culture, thus as in various archaic and oriental religions, is equivalent to the spiritual fullness as essential condition to the revealing of essence. Retracing the archaic origins of the Basque culture emerges the deep meaning that the void assumes as key element in the religious interpretation of the passage from the life to the death. The symbology becomes rich of meaningful characters who derive from the fact that it is a chthonic cult. A representation of earth like place in which divine manifest itself but also like connection between divine and human, and this manipulation of the matter of which the earth it is composed is the tangible projection of the continuous search of the man towards God. The search of equilibrium between empty and full, that characterizes also the development of the form in architecture, in the Basque culture assumes therefore a peculiar value that returns like constant in great part of the plastic expressions, than in this context seem to be privileged regarding the other expressive forms. Oteiza and Chillida develop two original points of view in the representation of the void through the form. Both use of rigorous systems of rules sensitive to the physics principles and the characters of the matter. The last aim of the Oteiza’s construction is the void like limit of the knowledge, like border between known and unknown. It doesn’t means to reduce the sculptural object to an only allusive dimension because the void as physical and spiritual power is an active void, that possesses that value able to reveal the being through the trace of un-being. The void in its transcendental manifestation acts at the same time from universal and from particular, like in the atomic structure of the matter, in which on one side it constitutes the inner structure of every atom and on the other one it is necessary condition to the interaction between all the atoms. The void can be seen therefore as the action field that concurs the relations between the forms but is also the necessary condition to the same existence of the form. In the construction of Chillida the void represents that counterpart structuring the matter, inborn in it, the element in absence of which wouldn’t be variations neither distinctive characters to define the phenomenal variety of the world. The physics laws become the subject of the sculptural representation, the void are the instrument that concurs to catch up the equilibrium. Chillida dedicate himself to experience the space through the senses, to perceive of the qualities, to tell the physics laws which forge the matter in the form and the form arranges the places. From the artistic experience of the two sculptors they can be transposed, to the architectonic work of Moneo, those matrices on which they have constructed their original lyric expressions, where the void is absolute protagonist. An ambit is defined thus within which the matrices form them drafts from the work of Oteiza and Chillida can be traced in the definition of the process of birth and construction of the architecture of Moneo, but also in the relation that the architecture establishes with the place and in the time. The void becomes instrument to read the space constructed in its relationships that determine the proportions, rhythms, and relations. In this way the void concurs to interpret the architectonic space and to read the value of it, the quality of the spaces constructing it. This because it’s like an instrument of the composition, whose role is to maintain to the separation between the elements putting in evidence the field of relations. The void is that instrument that serves to characterize the elements that are with in the composition, related between each other, but distinguished. The meaning of the void therefore pushes the interpretation of the architectonic composition on the game of the relations between the elements that, independent and distinguished, strengthen themselves in their identity. On the one hand if void, as measurable reality, concurs all the dimensional changes quantifying the relationships between the parts, on the other hand its dialectic connotation concurs to search the equilibrium that regulated such variations. Equilibrium that therefore does not represent an obtained state applying criteria setting up from arbitrary rules but that depends from the intimate nature of the matter and its embodiment in the form. The production of a form, or a formal system that can be finalized to the construction of a building, is indissolubly tied to the technique that is based on the acquaintance of the formal vocation of the matter, and what it also can representing, meaning, expresses itself in characterizing the site. For Moneo, in fact, the space defined from the architecture is above all a site, because the essence of the site is based on the construction. When Moneo speaks about “birth of the idea of plan” like essential moment in the construction process of the architecture, it refers to a process whose complexity cannot be born other than from a deepened acquaintance of the site that leads to the comprehension of its specificity. Specificity arise from the infinite sum of relations, than for Moneo is the story of the oneness of a site, of its history, of the cultural identity and of the dimensional characters that that they are tied to it beyond that to the physical characteristics of the site. This vision is leaned to a solid made physical structure of perceptions, of distances, guideline and references that then make that the process is first of all acquaintance, appropriation. Appropriation that however does not happen for directed consequence because does not exist a relationship of cause and effect between place and architecture, thus as an univocal and exclusive way does not exist to arrive to a representation of an idea. An approach that, through the construction of the place where the architecture acquires its being, searches an expression of its sense of the truth. The proposal of a distinction for areas like space, matter, spirit and time, answering to the issues that scan the topics of the planning search of Moneo, concurs a more immediate reading of the systems subtended to the composition principles, through which is related the recurrent architectonic elements in its planning dictionary. From the dialectic between the opposites that is expressed in the duality of the form, through the definition of a complex element that can mediate between inside and outside as a real system of exchange, Moneo experiences the form development of the building deepening the relations that the volume establishes in the site. From time to time the invention of a system used to answer to the needs of the program and to resolve the dual character of the construction in an only gesture, involves a deep acquaintance of the professional practice. The technical aspect is the essential support to which the construction of the system is indissolubly tied. What therefore arouses interest is the search of the criteria and the way to construct that can reveal essential aspects of the being of the things. The constructive process demands, in fact, the acquaintance of the formative properties of the matter. Property from which the reflections gush on the relations that can be born around the architecture through the resonance produced from the forms. The void, in fact, through the form is in a position to constructing the site establishing a reciprocity relation. A reciprocity that is determined in the game between empty and full and of the forms between each other, regarding around, but also with regard to the subjective experience. The construction of a background used to amplify what is arranged on it and to clearly show the relations between the parts and at the same time able to tie itself with around opening the space of the vision, is a system that in the architecture of Moneo has one of its more effective applications in the use of the platform used like architectonic element. The spiritual force of this architectonic gesture is in the ability to define a place whose projecting intention is perceived and shared with who experience and has lived like some instrument to contact the cosmic forces, in a delicate process that lead to the equilibrium with them, but in completely physical way. The principles subtended to the construction of the form taken from the study of the void and the relations that it concurs, lead to express human values in the construction of the site. The validity of these principles however is tested from the time. The time is what Moneo considers as filter that every architecture is subordinate to and the survival of architecture, or any of its formal characters, reveals them the validity of the principles that have determined it. It manifests thus, in the tie between the spatial and spiritual dimension, between the material and the worldly dimension, the state of necessity that leads, in the construction of the architecture, to establish a contact with the forces of the universe and the intimate world, through a process that translate that necessity in elaboration of a formal system.
Resumo:
The object of the present study is the process of gas transport in nano-sized materials, i.e. systems having structural elements of the order of nanometers. The aim of this work is to advance the understanding of the gas transport mechanism in such materials, for which traditional models are not often suitable, by providing a correct interpretation of the relationship between diffusive phenomena and structural features. This result would allow the development new materials with permeation properties tailored on the specific application, especially in packaging systems. The methods used to achieve this goal were a detailed experimental characterization and different simulation methods. The experimental campaign regarded the determination of oxygen permeability and diffusivity in different sets of organic-inorganic hybrid coatings prepared via sol-gel technique. The polymeric samples coated with these hybrid layers experienced a remarkable enhancement of the barrier properties, which was explained by the strong interconnection at the nano-scale between the organic moiety and silica domains. An analogous characterization was performed on microfibrillated cellulose films, which presented remarkable barrier effect toward oxygen when it is dry, while in the presence of water the performance significantly drops. The very low value of water diffusivity at low activities is also an interesting characteristic which deals with its structural properties. Two different approaches of simulation were then considered: the diffusion of oxygen through polymer-layered silicates was modeled on a continuum scale with a CFD software, while the properties of n-alkanthiolate self assembled monolayers on gold were analyzed from a molecular point of view by means of a molecular dynamics algorithm. Modeling transport properties in layered nanocomposites, resulting from the ordered dispersion of impermeable flakes in a 2-D matrix, allowed the calculation of the enhancement of barrier effect in relation with platelets structural parameters leading to derive a new expression. On this basis, randomly distributed systems were simulated and the results were analyzed to evaluate the different contributions to the overall effect. The study of more realistic three-dimensional geometries revealed a prefect correspondence with the 2-D approximation. A completely different approach was applied to simulate the effect of temperature on the oxygen transport through self assembled monolayers; the structural information obtained from equilibrium MD simulations showed that raising the temperature, makes the monolayer less ordered and consequently less crystalline. This disorder produces a decrease in the barrier free energy and it lowers the overall resistance to oxygen diffusion, making the monolayer more permeable to small molecules.
Resumo:
Knowledge on how ligaments and articular surfaces guide passive motion at the human ankle joint complex is fundamental for the design of relevant surgical treatments. The dissertation presents a possible improvement of this knowledge by a new kinematic model of the tibiotalar articulation. In this dissertation two one-DOF spatial equivalent mechanisms are presented for the simulation of the passive motion of the human ankle joint: the 5-5 fully parallel mechanism and the fully parallel spherical wrist mechanism. These mechanisms are based on the main anatomical structures of the ankle joint, namely the talus/calcaneus and the tibio/fibula bones at their interface, and the TiCaL and CaFiL ligaments. In order to show the accuracy of the models and the efficiency of the proposed procedure, these mechanisms are synthesized from experimental data and the results are compared with those obtained both during experimental sessions and with data published in the literature. Experimental results proved the efficiency of the proposed new mechanisms to simulate the ankle passive motion and, at the same time, the potentiality of the mechanism to replicate the ankle’s main anatomical structures quite well. The new mechanisms represent a powerful tool for both pre-operation planning and new prosthesis design.
Resumo:
The objective of this dissertation is to develop and test a predictive model for the passive kinematics of human joints based on the energy minimization principle. To pursue this goal, the tibio-talar joint is chosen as a reference joint, for the reduced number of bones involved and its simplicity, if compared with other sinovial joints such as the knee or the wrist. Starting from the knowledge of the articular surface shapes, the spatial trajectory of passive motion is obtained as the envelop of joint configurations that maximize the surfaces congruence. An increase in joint congruence corresponds to an improved capability of distributing an applied load, allowing the joint to attain a better strength with less material. Thus, joint congruence maximization is a simple geometric way to capture the idea of joint energy minimization. The results obtained are validated against in vitro measured trajectories. Preliminary comparison provide strong support for the predictions of the theoretical model.
Resumo:
Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.
Resumo:
This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.
Resumo:
The fall of the Berlin Wall opened the way for a reform path – the transition process – which accompanied ten former Socialist countries in Central and South Eastern Europe to knock at the EU doors. By the way, at the time of the EU membership several economic and structural weaknesses remained. A tendency towards convergence between the new Member States (NMS) and the EU average income level emerged, together with a spread of inequality at the sub-regional level, mainly driven by the backwardness of the agricultural and rural areas. Several progresses were made in evaluating the policies for rural areas, but a shared definition of rurality is still missing. Numerous indicators were calculated for assessing the effectiveness of the Common Agricultural Policy and Rural Development Policy. Previous analysis on the Central and Eastern European countries found that the characteristics of the most backward areas were insufficiently addressed by the policies enacted; the low data availability and accountability at a sub-regional level, and the deficiencies in institutional planning and implementation represented an obstacle for targeting policies and payments. The next pages aim at providing a basis for understanding the connections between the peculiarities of the transition process, the current development performance of NMS and the EU role, with particular attention to the agricultural and rural areas. Applying a mixed methodological approach (multivariate statistics, non-parametric methods, spatial econometrics), this study contributes to the identification of rural areas and to the analysis of the changes occurred during the EU membership in Hungary, assessing the effect of CAP introduction and its contribution to the convergence of the Hungarian agricultural and rural. The author believes that more targeted – and therefore efficient – policies for agricultural and rural areas require a deeper knowledge of their structural and dynamic characteristics.
Resumo:
In this thesis, we extend some ideas of statistical physics to describe the properties of human mobility. By using a database containing GPS measures of individual paths (position, velocity and covered space at a spatial scale of 2 Km or a time scale of 30 sec), which includes the 2% of the private vehicles in Italy, we succeed in determining some statistical empirical laws pointing out "universal" characteristics of human mobility. Developing simple stochastic models suggesting possible explanations of the empirical observations, we are able to indicate what are the key quantities and cognitive features that are ruling individuals' mobility. To understand the features of individual dynamics, we have studied different aspects of urban mobility from a physical point of view. We discuss the implications of the Benford's law emerging from the distribution of times elapsed between successive trips. We observe how the daily travel-time budget is related with many aspects of the urban environment, and describe how the daily mobility budget is then spent. We link the scaling properties of individual mobility networks to the inhomogeneous average durations of the activities that are performed, and those of the networks describing people's common use of space with the fractional dimension of the urban territory. We study entropy measures of individual mobility patterns, showing that they carry almost the same information of the related mobility networks, but are also influenced by a hierarchy among the activities performed. We discover that Wardrop's principles are violated as drivers have only incomplete information on traffic state and therefore rely on knowledge on the average travel-times. We propose an assimilation model to solve the intrinsic scattering of GPS data on the street network, permitting the real-time reconstruction of traffic state at a urban scale.
Resumo:
Dealing with latent constructs (loaded by reflective and congeneric measures) cross-culturally compared means studying how these unobserved variables vary, and/or covary each other, after controlling for possibly disturbing cultural forces. This yields to the so-called ‘measurement invariance’ matter that refers to the extent to which data collected by the same multi-item measurement instrument (i.e., self-reported questionnaire of items underlying common latent constructs) are comparable across different cultural environments. As a matter of fact, it would be unthinkable exploring latent variables heterogeneity (e.g., latent means; latent levels of deviations from the means (i.e., latent variances), latent levels of shared variation from the respective means (i.e., latent covariances), levels of magnitude of structural path coefficients with regard to causal relations among latent variables) across different populations without controlling for cultural bias in the underlying measures. Furthermore, it would be unrealistic to assess this latter correction without using a framework that is able to take into account all these potential cultural biases across populations simultaneously. Since the real world ‘acts’ in a simultaneous way as well. As a consequence, I, as researcher, may want to control for cultural forces hypothesizing they are all acting at the same time throughout groups of comparison and therefore examining if they are inflating or suppressing my new estimations with hierarchical nested constraints on the original estimated parameters. Multi Sample Structural Equation Modeling-based Confirmatory Factor Analysis (MS-SEM-based CFA) still represents a dominant and flexible statistical framework to work out this potential cultural bias in a simultaneous way. With this dissertation I wanted to make an attempt to introduce new viewpoints on measurement invariance handled under covariance-based SEM framework by means of a consumer behavior modeling application on functional food choices.