773 resultados para cracking


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-four manganese nodules from the surface of the sea floor and fifteen buried nodules were studied. With three exceptions, the nodules were collected from the area covered by Valdivia Cruise VA 04 some 1200 nautical miles southeast of Hawaii. Age determinations were made using the ionium method. In order to get a true reproduction of the activity distribution in the nodules, they were cut in half and placed for one month on nuclear emulsion plates to determine the alpha-activity of the ionium and its daughter products. Special methods of counting the alpha-tracks resolution to depth intervals of 0.125 mm. For the first time it was possible to resolve zones of rapid growth (impulse growth) with growth rates, s > 50 mm/106 yr and interruptions in growth. With few exceptions the average rate of growth of all nodules was surprisingly uniform at 4-9 mm/10 yr. No growth could be recognized radioactively in the buried nodules. One exceptional nodule has had recent impulse growth and, in the material formed, the ionium is not yet in equilibrium with its daughter products. Individual layers in one nodule from the Indian Ocean could be dated and an average time interval of t = 2600±400 yr was necessary to form one layer. The alternation between iron and manganese-rich parts of the nodules was made visible by colour differences resulting from special treatment of cut surfaces with HCl vapour. The zones of slow growth of one nodule are relatively enriched in iron. Earlier attempts to find paleomagnetic reversals in manganese nodules have been continued. Despite considerable improvement in areal resolution, reversals were not detected in the nodules studied. Comparisons of the surface structure, microstructure in section and the radiometric dating show that there are erosion surfaces and growth surfaces on the outer surfaces of the manganese nodules. The formation of cracks in the nodules was studied in particular. The model of age-dependent nodule shrinkage and cracking surprisingly indicates that the nodules break after exceeding a certain age and/or size. Consequently, the breaking apart of manganese nodules is a continuous process not of catastrophic or discontinuous origin. The microstructure of the nodules exhibits differences in the mechanism of accretion and accretion rate of material, shortly referred to as accretion form. Thus non-directional growth inside the nodules as well as a directional growth may be observed. Those nodules with large accretion forms have grown faster than smaller ones. Consequently, parallel layers indicate slow growth. The upper surfaces of the nodules, protruding into the bottom water appear to be more prone to growth disturbances than the lower surfaces, immersed in the sediment. Features of some nodules show, that as they develop, they neither turned nor rolled. Yet unknown is the mechanism that keeps the nodules at the surface during continuous sedimentation. All in all, the nodules remain the objects of their own distinctive problems. The hope of using them as a kind of history book still seems to be very remote.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mesoporous materials has been an special attention, among them was discovered in the 1990´s the mesoporous molecular sieve of SBA-15 type. The good features of the SBA- 15 makes this material very promising in catalysis, however, due to the absence of native active sites, it has low catalytic activity. In this way, different metals and oxides have been included in this molecular sieve as a means of introducing active sites and increase its catalytic activity. Among the oxides that are being researched, there is the niobium oxide, which presents strong acid sites and exists in abundance. Brazil is the largest producer of the mineral. On the other hand, the production of biofuels has been desired, but it requires the development of new catalysts for this purpose. The aim of this work was to develop silicate of niobium by impregnation and by new synthesis method for application in the cracking of moringa oil. The methodology consisted of inserting the niobium oxide either by postsynthesis process using wet impregnation and direct insertion. For direct insert a new method was developed for pH adjustment, being tested different pH, and the pH 2.2 was used different ratios of Si/Nb. The materials were characterized by different techniques such as: XRD, N2 adsorption, SEM, EDS, UV-visible, TG/DTG, DSC, TEM, acidity by thermodesorption of n-butilamine and FTIR. After this part of the catalysts developed by the two methods were tested in the thermocatalytic cracking of moringa oil, being used a simple distillation. All silicates of Niobium obtained showed a highly ordered structure, having high specific areas, good distribution of pore diameters, beyond present a morphology in the form of fibers. In the catalysts after synthesis was observed that the niobium inserted has so as octahedrally and tetrahedrally coordinated, demonstrating that there were also oxides formed on the external surface of SBA-15. The materials obtained in the direct synthesis are only tetrahedrally coordinated. The new synthesis method of pH adjusting by using the buffer solution for it, proved to be very efficient for the production of such materials, because the materials obtained showed characteristics and structures similar to the molecular sieve of SBA-15 type. Among the pH tested the material that presented better characteristics was synthesized at pH 2.2. The application of these materials in catalytic cracking showed a higher formation of organic liquids when compared to thermal cracking, in addition to significantly reducing the acidity and residues formed, demonstrating that the use of silicates of Niobium increases both the conversion and the selectivity of the products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro cracking during service is a critical problem in polymer structures and polymer composite materials. Self-healing materials are able to repair micro cracks, thus their preventing propagation and catastrophic failure of structural components. One of the self-healing approaches presented in the literature involves the use of solvents which react with the polymer. The objective of this research is to investigate a procedure to encapsulate solvents in halloysite nanotubes to promote self-healing ability in epoxy. Healing is triggered by crack propagation through embedded nanotubes in the polymer, which then release the liquid sovent into the crack plane. Two solvents were considered in this work: dimethylsulfoxide (DMSO) and nitrobenzene. The nanotubes were coated using the layer-by-layer technique of oppositely charged polyelectrolytes: cetyltrimethylammonium bromide (CTAB) and sodium polyacrylate. Solvent encapsulation was verified by X-ray diffraction (XRD), Fourier transform infrared (FTIR), analysis thermogravimetry (TGA), adsorption and desorption of nitrogen and scanning electron microscopy (SEM). The introduction of the solvent DMSO into the cavity of the nanotubes was confirmed by the techniques employed. However, was not verified with nitrobenzene only promoted clay aggregation. The results suggest that the CTAB reacted with the halloystite to form a sealing layer on the surface of the nanotubes, thus encapsulating the solvent, while this was not verified using sodium polyacrylate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nel presente elaborato è stato studiato l'effetto prodotto dall'inserimento di interstrati di rinforzo tra strati legati di una pavimentazione. Si è realizzato un confronto tra due pavimentazioni, una rinforzata e l'altra di controllo, mediante il software di calcolo OLCRACK, aventi le medesime caratteristiche geometriche e gli stessi materiali. In questo modo è stato possibile osservare l'effetto della griglia di rinforzo nel contrastare e ritardare il fenomeno del reflective cracking. Parallelamente è stata effettuata un'indagine sperimentale in laboratorio su travetti bi-strato rinforzati con due tipologie differenti di griglie. I risultati hanno evidenziato l'importanza del ricoprimento sulla griglia, poiché i travetti più spessi hanno dato una risposta migliore alla vita a fatica. In più è stata osservata l'importanza della resistenza a trazione della griglia nell'incremento dei cicli a rottura dei provini.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current-voltage characteristics of InP were investigated in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to the growth of passivating films. The relationship between the peak currents and the scan rates suggests that the film formation process is diffusion controlled in both cases. The film thickness required to inhibit current flow was found to be much lower on samples anodized in the sulphide solution. Focused ion beam (FIB) secondary electron images of the surface films show that film cracking of the type reported previously for films grown in (NH4)2S is also observed for films grown in KOH. X-ray and electron diffraction measurements indicate the presence of In2O3 and InPO4 in films grown in KOH and In2S3 in films grown in (NH4)2S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 210, a greatly expanded sedimentary sequence of continuous Cretaceous black shales was recovered at Site 1276. This section corresponds to the Hatteras Formation, which has been documented widely in the North Atlantic Ocean. The cored sequence extends from the lowermost Albian, or possibly uppermost Aptian, to the Cenomanian/Turonian boundary and is characterized by numerous gravity-flow deposits and sporadic, finely laminated black shales. The sequence also includes several sedimentary intervals with high total organic carbon (TOC) contents, in several instances of probable marine origin that may record oceanic anoxic events (OAE). These layers might correspond to the Cenomanian-Turonian OAE 2; the mid-Cenomanian event; and OAE 1b, 1c, and 1d in the Albian. In addition, another interval with geochemical characteristics similar to OAE-type layers was recognized in the Albian, although it does not correspond to any of the known OAEs. This study investigates the origin of the organic matter contained within these black shale intervals using TOC and CaCO3 contents, Corg/Ntot ratios, organic carbon and nitrogen isotopes, trace metal composition, and rock-eval analyses. Most of these black shale intervals, especially OAE 2 and 1b, are characterized by low 15N values (<0) commonly observed in mid-Cretaceous black shales, which seem to reflect the presence of an altered nitrogen cycle with rates of nitrogen fixation significantly higher than in the modern ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polar compound (NSO) fractions of seabed petroleums and sediment extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry. The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolysates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore samples are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds correlated with samples exhibiting a high degree of thermal maturity. Several homologous series of related ketone isomers are enriched in the interiors of the hydrothermal vent samples or in hydrothermally-altered sequences of the downcore sediments (DSDP Holes 477 and 481A). The n-alkanones range in carbon number from C11 to C33 with a Cmax from 14 to 23, distributions that are similar to those of the n-alkanes. The alkan-2-ones are usually in highest concentrations, with lower amounts of 3-, 4-, 5-, 6-, 7- (and higher) alkanones, and they exhibit no carbon number preference (there is an odd carbon number preference of alkanones observed for downcore samples). The alkanones are enriched in the interiors of the hydrothermal vent spires or in downcore hydrothermally-altered sediments, indicating an origin at depth or in the hydrothermal fluids and not from an external biogenic deposition. Minor amounts of C13 and C18 isoprenoid ketones are also present. Simulation of the natural hydrothermal alternation process by laboratory hydrous pyrolysis techniques provided information regarding the mode of alkanone formation. Hydrous pyrolysis of n-C32H66 at 350°C for 72 h with water only or water with inorganic additives has been studied using a stainless steel reaction vessel. In each experiment oxygenated hydrocarbons, including alkanones, were formed from the n-alkane. The product distributions indicate a reaction pathway consisting of n-alkanes and a-olefins as primary cracking products with internal olefins and alkanones as secondary reaction products. Hydrous pyrolyses of Messel shale spiked with molecular probes have been performed under similar time and temperature constraints to produce alkanone distributions like those found in the hydrothermal vent petroleums.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twelve submarine mud volcanoes (MV) in the Kumano forearc basin within the Nankai Trough subduction zone were investigated for hydrocarbon origins and fluid dynamics. Gas hydrates diagnostic for methane concentrations exceeding solubilities were recovered from MVs 2, 4, 5, and 10. Molecular ratios (C1/C2<250) and stable carbon isotopic compositions (d13C-CH4 >-40 per mil V-PDB) indicate that hydrate-bound hydrocarbons (HCs) at MVs 2, 4, and 10 are derived from thermal cracking of organic matter. Considering thermal gradients at the nearby IODP Sites C0009 and C0002, the likely formation depth of such HCs ranges between 2300 and 4300 m below seafloor (mbsf). With respect to basin sediment thickness and the minimum distance to the top of the plate boundary thrust we propose that the majority of HCs fueling the MVs is derived from sediments of the Cretaceous to Tertiary Shimanto belt below Pliocene/Pleistocene to recent basin sediments. Considering their sizes and appearances hydrates are suggested to be relicts of higher MV activity in the past, although the sporadic presence of vesicomyid clams at MV 2 showed that fluid migration is sufficient to nourish chemosynthesis-based organisms in places. Distributions of dissolved methane at MVs 3, 4, 5, and 8 pointed at fluid supply through one or few MV conduits and effective methane oxidation in the immediate subsurface. The aged nature of the hydrates suggests that the major portion of methane immediately below the top of the methane-containing sediment interval is fueled by current hydrate dissolution rather than active migration from greater depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal and fatigue cracking are the major pavement distresses that contribute to a drastic reduction of the pavement’s service life and performance in Ontario. Chemical oxidation and hardening of asphalt binders deteriorates its physical properties since physical properties of asphalts depend on its chemical composition. This thesis is aimed to establish a relationship between physical and chemical properties of asphalt binders. A secondary objective is to show the strong correlation between CTOD and temperature. All recovered and straight Ministry of Transportation of Ontario (MTO) samples were investigated using conventional Superpave® test method dynamic shear rheometer (DSR) as well as improved MTO test methods such as extended bending beam rheometer (eBBR) and double-edge-notched tension (DENT) test. DENT test was conducted for all Ontario contract samples at three different temperatures based on their performance grade after three hours of thermal conditioning and compared the results in terms of essential work of fracture, plastic work of fracture and CTOD at different temperatures. Good correlation exists between CTOD and temperature according to the DENT data. X-ray fluorescence (XRF) analysis was conducted to detect the presence of heavy metals such as zinc and molybdenum believed to have originated from waste engine oil. Fourier transform infra-red spectroscopy (FTIR) was performed to determine the abundance of functional groups such as carbonyl, sulfoxides, polyisobutylene, etc. XRF and FTIR analysis confirmed that most of the samples contain waste engine oil and/or oxidized residues, which is believed to be a root cause of premature pavement failures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal and fatigue cracking are the two of the major pavement distress phenomena that contribute significantly towards increased premature pavement failures in Ontario. This in turn puts a massive burden on the provincial budgets as the government spends huge sums of money on the repair and rehabilitation of roads every year. Governments therefore need to rethink and re-evaluate their current measures in order to prevent it in future. The main objectives of this study include: the investigation of fatigue distress of 11 contract samples at 10oC, 15oC, 20oC and 25oC and the use of crack-tip-opening-displacement (CTOD) requirements at temperatures other than 15oC; investigation of thermal and fatigue distress of the comparative analysis of 8 Ministry of Transportation (MTO) recovered and straight asphalt samples through double-edge-notched-tension test (DENT) and extended bending beam rheometry (EBBR); chemical testing of all samples though X-ray Fluorescence (XRF) and Fourier transform infrared analysis (FTIR); Dynamic Shear Rheometer (DSR) higher and intermediate temperature grading; and the case study of a local Kingston road. Majority of 11 contract samples showed satisfactory performance at all temperatures except one sample. Study of CTOD at various temperatures found a strong correlation between the two variables. All recovered samples showed poor performance in terms of their ability to resist thermal and fatigue distress relative to their corresponding straight asphalt as evident in DENT test and EBBR results. XRF and FTIR testing of all samples showed the addition of waste engine oil (WEO) to be the root cause of pavement failures. DSR high temperature grading showed superior performance of recovered binders relative to straight asphalt. The local Kingston road showed extensive signs of damage due to thermal and fatigue distress as evident from DENT test, EBBR results and pictures taken in the field. In the light of these facts, the use of waste engine oil and recycled asphalt in pavements should be avoided as these have been shown to cause premature failure in pavements. The DENT test existing CTOD requirements should be implemented at other temperatures in order to prevent the occurrences of premature pavement failures in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During nanoindentation and ductile-regime machining of silicon, a phenomenon known as “self-healing” takes place in that the microcracks, microfractures, and small spallings generated during the machining are filled by the plastically flowing ductile phase of silicon. However, this phenomenon has not been observed in simulation studies. In this work, using a long-range potential function, molecular dynamics simulation was used to provide an improved explanation of this mechanism. A unique phenomenon of brittle cracking was discovered, typically inclined at an angle of 45° to 55° to the cut surface, leading to the formation of periodic arrays of nanogrooves being filled by plastically flowing silicon during cutting. This observation is supported by the direct imaging. The simulated X-ray diffraction analysis proves that in contrast to experiments, Si-I to Si-II (beta tin) transformation during ductile-regime cutting is highly unlikely and solid-state amorphisation of silicon caused solely by the machining stress rather than the cutting temperature is the key to its brittle-ductile transition observed during the MD simulations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough understanding of damage mechanisms associated with crush events. This paper details the manufacture, testing and modelling of self-supporting corrugated-shaped thermoplastic composite specimens for crashworthiness assessment. These specimens demonstrated a 57.3% higher specific energy absorption compared to identical specimen made from thermoset composites. The corresponding damage mechanisms were investigated in-situ using digital microscopy and post analysed using Scanning Electron Microscopy (SEM). Splaying and fragmentation modes were the 2 primary failure modes involving fibre breakage, matrix cracking and delamination. A mesoscale composite damage model, with new non-linear shear constitutive laws, which combines a range of novel techniques to accurately capture the material response under crushing, is presented. The force-displacement curves, damage parameter maps and dissipated energy, obtained from the numerical analysis, are shown to be in a good qualitative and quantitative agreement with experimental results. The proposed approach could significantly reduce the extent of physical testing required in the development of crashworthy structures.