797 resultados para countermovement jump
Resumo:
[Elliott received jump-pass from Chappuis for a first down]
Resumo:
[Ensian caption: "In the classic action of the jump shooter, John Tidwell seems to float in mid-air, poised and ready fire on the basket."]
Resumo:
[Ensian caption: "High scoring John Tidwell adds another tow points to his total on his deadly fall-away jump shot."]
Resumo:
[Ensian caption: If you have scoffed at the idea of girls attempting to play basketball, look twice at the skill displayed in maneuvering this jump "]ball.]
Resumo:
Isothermal-isobaric (NPT) molecular dynamics simulation has been performed to investigate the layering behavior and structure of nanoconfined quaternary alkylammoniums in organoclays. This work is focused on systems consisting of two clay layers and a number of alkylammoniums, and involves the use of modified Dreiding force field. The simulated basal spacings of organoclays agree satisfactorily with the experimental results in the literature. The atomic density profiles in the direction normal to the clay surface indicate that the alkyl chains within the interlayer space of montmorillonite exhibit an obvious layering behavior. The headgroups of long alkyl chains are distributed within two layers close to the clay surface, whereas the distributions of methyl and methylene groups are strongly dependent on the alkyl chain length and clay layer charge. Monolayer, bilayer, and pseudo-trilayer structures are found in organoclays modified with single long alkyl chains, which are identical to the structural models based on the measured basal spacings. A pseudo-quadrilayer structure, for the first time to our knowledge, is also identified in organoclays with double long alkyl chains. In the mixture structure of paraffin-type and multilayer, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer in pseudo-trilayer as well as next nearest layer in pseudo-quadrilayer.
Resumo:
A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.
Resumo:
We analyse the relation between local two-atom and total multi-atom entanglements in the Dicke system composed of a large number of atoms. We use concurrence as a measure of entanglement between two atoms in the multi-atom system, and the spin squeezing parameter as a measure of entanglement in the whole n-atom system. In addition, the influence of the squeezing phase and bandwidth on entanglement in the steady-state Dicke system is discussed. It is shown that the introduction of a squeezed field leads to a significant enhancement of entanglement between two atoms, and the entanglement increases with increasing degree of squeezing and bandwidth of the incident squeezed field. In the presence of a coherent field the entanglement exhibits a strong dependence on the relative phase between the squeezed and coherent fields, that can jump quite rapidly from unentangled to strongly entangled values when the phase changes from zero to pi. We find that the jump of the degree of entanglement is due to a flip of the spin squeezing from one quadrature component of the atomic spin to the other component when the phase changes from zero to pi. We also analyse the dependence of the entanglement on the number of atoms and find that, despite the reduction in the degree of entanglement between two atoms, a large entanglement is present in the whole n-atom system and the degree of entanglement increases as the number of atoms increases.
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Frog jumping is an excellent model system for examining the structural basis of interindividual variation in burst locomotor performance. Some possible factors that affect jump performance, such as total body size, hindlimb length, muscle mass, and muscle mechanical and biochemical properties, were analysed at the interindividual (intraspecies) level in the tree frog Hyla multilineata. The aim of this study was to determine which of these physiological and anatomical variables both vary between individuals and are correlated with interindividual variation in jump performance. The model produced via stepwise linear regression analysis of absolute data suggested that 62% of the interindividual variation in maximum jump distance could be explained by a combination of interindividual variation in absolute plantaris muscle mass, total hindlimb muscle mass ( excluding plantaris muscle), and pyruvate kinase activity. When body length effects were removed, multiple regression indicated that the same independent variables explained 43% of the residual interindividual variation in jump distance. This suggests that individuals with relatively large jumping muscles and high pyruvate kinase activity for their body size achieved comparatively large maximal jump distances for their body size.
Resumo:
Hormone replacement therapy (HRT) has been reported to exert a positive effect on preserving muscle strength following the menopause, however, the mechanism of action remains unclear. We examined whether the mechanism involved preservation of muscle composition as determined by skeletal muscle attenuation. Eighty women aged 50-57 years were randomly assigned to either: HRT, exercise (Ex), HRT + exercise (ExHRT), and control (Co) for 1 year. The study was double-blinded with subjects receiving oestradiol and norethisterone acetate (Kliogest) or placebo. Exercise included progressive high-impact training for the lower limbs. Skeletal muscle attenuation in Hounsfield units (HU) was determined by computed tomography of the mid-thigh. Areas examined were the quadriceps compartment (includes intermuscular adipose tissue), quadriceps muscles, the posterior compartment and posterior muscles. Muscle performance was determined by knee extensor strength, vertical jump height, and running speed over 20 m. Fifty-one women completed the intervention. Vertical jump height and running speed improved in the HRT and ExHRT groups compared with Co (interaction, P < 0.01). For both the quadriceps compartment and quadriceps muscles, HU significantly increased (interaction, P <= 0.005) for HRT, Ex, and ExHRT compared with Co. For the posterior compartment, HU for the HRT and ExHRT were significantly increased compared with Co, while for posterior muscles, ExHRT was significantly greater than Co. Although the effects were modest, the results indicate that HRT, either alone or combined with exercise, may play a role in preserving/improving skeletal muscle attenuation in early postmenopausal women and thereby exert a positive effect on muscle performance.
Predator-mediated phenotypic plasticity in tadpoles of the striped marsh frog, Limnodynastes peronii
Resumo:
We tested the phenotypic responses of larval striped marsh frogs (Limnodynastes peronii) to the odonate nymph predator, Aeshna brevistyla. When reared in the presence of dragonfly nymphs feeding upon conspecifics of L. peronii larvae the tadpoles showed a strong change in morphology. Morphological changes included an increase in total tail height, but also an unexpected marked change in head-body shape. In addition, we examined how tadpole development, as well as mass and length at metamorphosis, was affected by exposure to dragonfly nymphs. Larval development of L. peronii was strongly influenced by exposure to the predatory behaviour of dragonfly nymphs. Predator-induced tadpoles had significantly slower developmental rates than control larvae. Although metamorphs of non-exposed L. peronii were approximately 33% lighter than predator-exposed metamorphs and possessed lower jump distances, after adjusting for mass there was no difference in jump distance. The newly described morphological response may assist in more accurately relating morphological plasticity to fitness.
Resumo:
Optical Bloch equations are widely used for describing dynamics in a system consisting molecules, electromagnetic waves, and a thermal bath. We analyze applicability of these equations to a single molecule imbedded in a solid matrix. Classical Bloch equations and the limits of their applicability are derived from more general master equations. Simple and intuitively appealing picture based on stochastic Bloch equations shows that at low temperatures, contrary to common believes, a strong driving field can not only suppress but can also increase decay rates of Rabi oscillations. A physical system where predicted effects can be observed experimentally is suggested. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Acceleration is an important factor for success in team-sport athletes. The purpose of this investigation was to compare the reliability of 10-m sprint times when using different starting techniques. Junior male rugby players (n=15) were tested for speed over 10 m on 2 different testing sessions. Three trials of 3 different starting techniques (standing, foot, and thumb starts) were assessed. Despite large differences in the time taken to perform 10-m sprints from different starts, there was minimal difference in the typical error (similar to 0.02 seconds, or