955 resultados para copper soil contamination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an iterative technique to obtain the exact solutions of the cubic Christoffel equation, the 21 elastic constants of copper sulphate pentahydrate have been determined at 25°C by the ultrasonic pulse echo method. The elastic constants, referred to the IRE recommended system of axes, are c11=5·65, c12=2·65, c13=3·21, c14=−0·33, c15=−0·08, c16=−0·39, c22=4·33, c23=3·47, c24=−0·07, c25=−0·21, c26=0·02, c33=5·69, c34=−0·44, c35=−0·21, c36=−0·16, c44=1·73, c45=0·09, c46=0·03, c55=1·22, c56=−0·26 and c66=1·00 in units of 1010 N m−2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ESR investigations at X band and optical-absorption measurements have been reported in single crystals of copper (n) diethyldithiocarbamate Cu[S 2CN(C2H5)2]2 diluted to 0.2% with the corresponding zinc complex. The measurements have been made both at room and liquid-oxygen temperatures. ESR measurements gave the following values for the parameters in spin Hamiltonian g11=2.1085, g=2.023(6), A63= 142.4×10-4 cm-1, A65 = 152.0×10-4 cm-1, B = 22.4×10-4 cm-1, Q~3×10-4 cm-1. Polarized optical absorption study has made possible a proper assignment of the absorption bands to their corresponding transitions. This has led to information regarding the ordering of the MO levels of the complex. The coefficients used in the MO description of the complex have been calculated from the observed parameters. The results show that the metal ligand BIσ bond is purely covalent and that the out-of-plane w bonding is appreciably covalent whereas the in-plane Π bonding is ionic. Further, it is noted that the metal ligand binding is more covalent with sulfur as ligand than with oxygen or nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potentiometric, spectrophotometric and polarographic evidence has been presented for the formation of mixed hydroxy complexes in coppermonoethanolamine system. A method has been developed for the analysis of Bjerrum formation curves taken in presence of 0·1, 0·2, 0·5 and 1·0 M monoethanolammonium ion with respect to hydroxy complexes. The formation of CuAOH+, CuA2OH+ and CuA3OH+ is shown and the corresponding stability constants are calculated at different concentrations of MEA ion. Curves showing the distribution of pure and hydroxy complexes at various pA values in solutions containing different concentrations of MEA ion have also been given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured copper(II) oxide film was deposited using reactive DC magnetron sputtering. It has been characterized using XRD, EDAX, XPS, and FESEM. The grain size of copper oxide film was found to be 40-65 nm with size distribution. The entire study was divided into two parts. In the first part, the film has been studied for its response to alcohol at different temperatures to find the optimum sensing temperature, whereas in the second part, the film sensitivity to different alcohol concentrations were studied at fixed optimum operating temperature. The optimum temperature for the response of ethanol was observed to be 400 C,and the response for different concentrations was found to be almost linear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QUITE OFTEN, metal ions profoundly affect the condensation of carbonyl compounds with primary amines to form Schiff bases as well as their subsequent reactions[I-4]. Condensation of benzaldehyde with o-phenylenediamine (opd) in glacial acetic acid[5] or in absolute alcohol[6] gives benzimidazole derivative, 1-benzyl-2-phenylbenzimidazole (bpbi). In this reaction, the Schiff base N,N'-dibenzylidene-o-phenylenedianfme (dbpd) has been postulated as an intermediate, which cyclises to give bpbi. It was found that the reaction of opd in presence of copperO1) perchlorate with benzaldehyde gave dbpd complex of copper(l) perchlorate instead of bpbi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sub-humid South India, recent studies have shown that black soil areas (Vertisols and vertic Intergrades), located on flat valley bottoms, have been rejuvenated through the incision of streambeds, inducing changes in the pedoclimate and soil transformation. Joint pedological, geochemical and geophysical investigations were performed in order to better understand the ongoing processes and their contribution to the chemistry of local rivers. The seasonal rainfall causes cycles of oxidation and reduction in a perched watertable at the base of the black soil, while the reduced solutions are exported through a loamy sand network. This framework favours a ferrolysis process, which causes low base saturation and protonation of clay, leading to the weathering of 2:1 then 1:1 clay minerals. Maximum weathering conditions occur at the very end of the wet season, just before disappearance of the perched watertable. Therefore, the by-products of soil transformation are partially drained off and calcareous nodules, then further downslope, amorphous silica precipitate upon soil dehydration. The ferrolysed area is fringing the drainage system indicating that its development has been induced by the streambed incision. The distribution of C-14 ages of CaCO3 nodules suggests that the ferrolysis process started during the late Holocene, only about 2 kyr B.P. at the studied site and about 5 kyr B.P. at the watershed outlet. The results of this study are applied to an assessment of the physical erosion rate (4.8x10(-3) m/kyr) since the recent reactivation of the erosion process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectrophotometric and potentiometric investigations have been carried out on copper-monoethanolamine complexes. Job plots at 920, 760 and 620 mµ have indicated the formation of CuA++, CuA2/++ and CuA3 ++. The$$\bar n - pA$$ curves have been obtained by a slight modification of the method of corresponding solutions and by pH measurements. The$$\bar n$$ vs. pA curves obtained at different metal concentrations coincide indicating the formation of mononuclear complexes. Experiments conducted with 0·1. 0·2, 0·5 and 1·0 M monoethanolammonium ion indicate the formation of mononuclear hydroxy complexes above pH 6. The nature of E m vs pA curves is closely analogous to that of$$\bar n$$ vs. pA curves. Absorption spectra taken at pH 9·8 with different amounts of monoethanolamine has given evidence for the formation of (CuA3OH·A)+.$$\bar n - pA$$ curves have been analyzed and the values ofβ 1, 1,β 1, 2 andβ 1, 3 have been obtained. Curves showing the distribution of complexes and the absorption curves of the individual complexes (CuA++, CuA2/++, and CuA3/++) have been calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of copper ammonium oxalate dihydrate (space group P1̃) has been derived from a refinement of the two-dimensional (hk0) and (0kl) x-ray data using the atomic coordinateis of the isomorphous salt CuK 2(C2O4)2.2H2O as the starting point of the analysis. In contrast to the chromium complexes of oxalic acid the C-C bonds in both the two nonequivalent oxalate ions in the unit cell are single bonds (1.58 and 1.61 Å) consistent with the conclusion of Jeffrey and Parry that the carboxyl groups of the oxalate ion are separated by a pure a bond with little or no π conjugation across the molecule. Both the oxalate ions are slightly nonplanar. The copper ions occupy the special positions (0, 0, 0) and 0, 1/2, 0) and their coordination is of the distorted octahedral type with four nearest oxygen neighbors ( ≃ 2 Å) at the corners of a square and two more distant atoms along the octahedral bond direction. The environment of the NH4+ ions consists of eight nearest oxygen atoms at a mean distance of 3 Å.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature plastic flow in copper was investigated by studying its tensile and creep deformation characteristics. The dependence of the flow stress on temperature and strain rate was used to evaluate the thermal activation energy while the activation area was derived from the change-in-stress creep experiments. A value of 0.6 eV was obtained for the total obstacle energy both in electrolytic and commerical copper. The activation areas in copper of three selected purities fell in the range 1200 to 100 b2. A forest intersection mechanism seems to control the temperature dependent part of the flow stress. The increase in the athermal component of the flow stress with impurity content in copper is attributed to a change in the dislocation density. The investigation also revealed that thermal activation of some attractive junctions also takes place during low-temperature creep. The model of attractive junction formation on a stress decrement during creep, yields a value of 45±10 ergs cm-2 for the stacking fault energy in copper.