916 resultados para continuous-resource model
Resumo:
Infrastructure as a Service clouds are a flexible and fast way to obtain (virtual) resources as demand varies. Grids, on the other hand, are middleware platforms able to combine resources from different administrative domains for task execution. Clouds can be used by grids as providers of devices such as virtual machines, so they only use the resources they need. But this requires grids to be able to decide when to allocate and release those resources. Here we introduce and analyze by simulations an economic mechanism (a) to set resource prices and (b) resolve when to scale resources depending on the users’ demand. This system has a strong emphasis on fairness, so no user hinders the execution of other users’ tasks by getting too many resources. Our simulator is based on the well-known GridSim software for grid simulation, which we expand to simulate infrastructure clouds. The results show how the proposed system can successfully adapt the amount of allocated resources to the demand, while at the same time ensuring that resources are fairly shared among users.
Resumo:
Received signal strength-based localization systems usually rely on a calibration process that aims at characterizing the propagation channel. However, due to the changing environmental dynamics, the behavior of the channel may change after some time, thus, recalibration processes are necessary to maintain the positioning accuracy. This paper proposes a dynamic calibration method to initially calibrate and subsequently update the parameters of the propagation channel model using a Least Mean Squares approach. The method assumes that each anchor node in the localization infrastructure is characterized by its own propagation channel model. In practice, a set of sniffers is used to collect RSS samples, which will be used to automatically calibrate each channel model by iteratively minimizing the positioning error. The proposed method is validated through numerical simulation, showing that the positioning error of the mobile nodes is effectively reduced. Furthermore, the method has a very low computational cost; therefore it can be used in real-time operation for wireless resource-constrained nodes.
Resumo:
Criminals are common to all societies. To fight against them the community takes different security measures as, for example, to bring about a police. Thus, crime causes a depletion of the common wealth not only by criminal acts but also because the cost of hiring a police force. In this paper, we present a mathematical model of a criminal-prone self-protected society that is divided into socio-economical classes. We study the effect of a non-null crime rate on a free-of-criminals society which is taken as a reference system. As a consequence, we define a criminal-prone society as one whose free-of-criminals steady state is unstable under small perturbations of a certain socio-economical context. Finally, we compare two alternative strategies to control crime: (i) enhancing police efficiency, either by enlarging its size or by updating its technology, against (ii) either reducing criminal appealing or promoting social classes at risk
Resumo:
This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which the code supplier augments the program with a certifícate (or proof). The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eíñcient, and automatic than generating the original proof. Abstraction Carrying Code (ACC) is an enabling technology for PCC in which an abstract model of the program plays the role of certifícate. The generation of the certifícate, Le., the abstraction, is automatically carried out by an abstract interpretation-based analysis engine, which is parametric w.r.t. different abstract domains. While the analyzer on the producer side typically has to compute a semantic fixpoint in a complex, iterative process, on the receiver it is only necessary to check that the certifícate is indeed a fixpoint of the abstract semantics equations representing the program. This is done in a single pass in a much more efficient process. ACC addresses the fundamental issues in PCC and opens the door to the applicability of the large body of frameworks and domains based on abstract interpretation as enabling technology for PCC. We present an overview of ACC and we describe in a tutorial fashion an application to the problem of resource-aware security in mobile code. Essentially the information computed by a cost analyzer is used to genérate cost certificates which attest a safe and efficient use of a mobile code. A receiving side can then reject code which brings cost certificates (which it cannot validate or) which have too large cost requirements in terms of computing resources (in time and/or space) and accept mobile code which meets the established requirements.
Resumo:
We present a method for the static resource usage analysis of MiniZinc models. The analysis can infer upper bounds on the usage that a MiniZinc model will make of some resources such as the number of constraints of a given type (equality, disequality, global constraints, etc.), the number of variables (search variables or temporary variables), or the size of the expressions before calling the solver. These bounds are obtained from the models independently of the concrete input data (the instance data) and are in general functions of sizes of such data. In our approach, MiniZinc models are translated into Ciao programs which are then analysed by the CiaoPP system. CiaoPP includes a parametric analysis framework for resource usage in which the user can define resources and express the resource usage of library procedures (and certain program construets) by means of a language of assertions. We present the approach and report on a preliminary implementation, which shows the feasibility of the approach, and provides encouraging results.
Resumo:
Performance studies of actual parallel systems usually tend to concéntrate on the effectiveness of a given implementation. This is often done in the absolute, without quantitave reference to the potential parallelism contained in the programs from the point of view of the execution paradigm. We feel that studying the parallelism inherent to the programs is interesting, as it gives information about the best possible behavior of any implementation and thus allows contrasting the results obtained. We propose a method for obtaining ideal speedups for programs through a combination of sequential or parallel execution and simulation, and the algorithms that allow implementing the method. Our approach is novel and, we argüe, more accurate than previously proposed methods, in that a crucial part of the data - the execution times of tasks - is obtained from actual executions, while speedup is computed by simulation. This allows obtaining speedup (and other) data under controlled and ideal assumptions regarding issues such as number of processor, scheduling algorithm and overheads, etc. The results obtained can be used for example to evalúate the ideal parallelism that a program contains for a given model of execution and to compare such "perfect" parallelism to that obtained by a given implementation of that model. We also present a tool, IDRA, which implements the proposed method, and results obtained with IDRA for benchmark programs, which are then compared with those obtained in actual executions on real parallel systems.