877 resultados para constrained controller
Resumo:
Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.
Resumo:
Dynamical systems that involve impacts frequently arise in engineering. This Letter reports a study of such a system at microscale that consists of a nonlinear resonator operating with an unilateral impact. The microresonators were fabricated on silicon-on-insulator wafers by using a one-mask process and then characterised by using the capacitively driving and sensing method. Numerical results concerning the dynamics of this vibro-impact system were verified by the experiments. Bifurcation analysis was used to provide a qualitative scenario of the system steady-state solutions as a function of both the amplitude and the frequency of the external driving sinusoidal voltage. The results show that the amplitude of resonant peak is levelled off owing to the impact effect and that the bandwidth of impacting is dependent upon the nonlinearity and the operating conditions.
Resumo:
Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.
Resumo:
This work sets out to evaluate the potential benefits and pit-falls in using a priori information to help solve the Magnetoencephalographic (MEG) inverse problem. In chapter one the forward problem in MEG is introduced, together with a scheme that demonstrates how a priori information can be incorporated into the inverse problem. Chapter two contains a literature review of techniques currently used to solve the inverse problem. Emphasis is put on the kind of a priori information that is used by each of these techniques and the ease with which additional constraints can be applied. The formalism of the FOCUSS algorithm is shown to allow for the incorporation of a priori information in an insightful and straightforward manner. In chapter three it is described how anatomical constraints, in the form of a realistically shaped source space, can be extracted from a subject’s Magnetic Resonance Image (MRI). The use of such constraints relies on accurate co-registration of the MEG and MRI co-ordinate systems. Variations of the two main co-registration approaches, based on fiducial markers or on surface matching, are described and the accuracy and robustness of a surface matching algorithm is evaluated. Figures of merit introduced in chapter four are shown to given insight into the limitations of a typical measurement set-up and potential value of a priori information. It is shown in chapter five that constrained dipole fitting and FOCUSS outperform unconstrained dipole fitting when data with low SNR is used. However, the effect of errors in the constraints can reduce this advantage. Finally, it is demonstrated in chapter six that the results of different localisation techniques give corroborative evidence about the location and activation sequence of the human visual cortical areas underlying the first 125ms of the visual magnetic evoked response recorded with a whole head neuromagnetometer.
Resumo:
The research was instigated by the Civil Aviation Authority (CAA) to examine the implications for air traffic controllers' (ATCO) job satisfaction of the possible introduction of systems incorporating computer-assisted decision making. Additional research objectives were to assess the possible costs of reductions in ATCO job satisfaction, and to recommend appropriate task allocation between ATCOs and computer for future systems design (Chapter 1). Following a review of the literature (Chapter 2) it is argued that existing approaches to systems and job design do not allow for a sufficiently early consideration of employee needs and satisfactions in the design of complex systems. The present research develops a methodology for assessing affective reactions to an existing system as a basis for making reommendations for future systems design (Chapter 3). The method required analysis of job content using two techniques: (a) task analysis (Chapter 4.1) and (b) the Job Diagnostic Survey (JDS). ATCOs' affective reactions to the several operational positions on which they work were investigated at three levels of detail: (a) Reactions to positions, obtained by ranking techniques (Chapter 4.2); (b) Reactions to job characteristics, obtained by use of JDS (Chapter 4.3); and (c) Reactions to tasks, obtained by use of Repertory Grid technique (Chapter 4.4). The conclusion is drawn that ATCOs' motivation and satisfaction is greatly dependent on the presence of challenge, often through tasks requiring the use of decision making and other cognitive skills. Results suggest that the introduction of systems incorporating computer-assisted decision making might result in financial penalties for the CAA and significant reductions in job satisfaction for ATCOs. General recommendations are made for allocation of tasks in future systems design (Chapter 5).
Resumo:
This thesis describes work completed on the application of H controller synthesis to the design of controllers for single axis high speed independent drive design examples. H controller synthesis was used in a single controller format and in a self-tuning regulator, a type of adaptive controller. Three types of industrial design examples were attempted using H controller synthesis, both in simulation and on a Drives Test Facility at Aston University. The results were benchmarked against a Proportional, Integral and Derivative (PID) with velocity feedforward controller (VFF), the industrial standard for this application. An analysis of the differences between a H and PID with VFF controller was completed. A direct-form H controller was determined for a limited class of weighting function and plants which shows the relationship between the weighting function, nominal plant and the controller parameters. The direct-form controller was utilised in two ways. Firstly it allowed the production of simple guidelines for the industrial design of H controllers. Secondly it was used as the controller modifier in a self-tuning regulator (STR). The STR had a controller modification time (including nominal model parameter estimation) of 8ms. A Set-Point Gain Scheduling (SPGS) controller was developed and applied to an industrial design example. The applicability of each control strategy, PID with VFF, H, SPGS and STR, was investigated and a set of general guidelines for their use was determined. All controllers developed were implemented using standard industrial equipment.
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via a crank shaft. However, to ensure efficient and reliable operation under all conditions, it is essential that motor current of a linear compressor follows a sinusoidal current command with a frequency which matches the system resonant frequency. The design of a high-performance current controller for linear compressor drive presents a challenge since the system is highly nonlinear, and an effective solution must be low cost. In this paper, a learning feed-forward current controller for the linear compressors is proposed. It comprises a conventional feedback proportional-integral controller and a feed-forward B-spline neural network (BSNN). The feed-forward BSNN is trained online and in real time in order to minimize the current tracking error. Extensive simulation and experiment results with a prototype linear compressor show that the proposed current controller exhibits high steady state and transient performance. © 2009 IEEE.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via crank shaft However, to ensure efficient and reliable operation under all conditions, it is essential that the motor current of the linear compressor follows a sinusoidal command profile with a frequency which matches the system resonant frequency. This paper describes a hybrid current controller for the linear compressors. It comprises a conventional proportional-integral (PI) controller, and a B-spline neural network compensator which is trained on-line and in real-time in order to minimize the current tracking error under all conditions with uncertain disturbances. It has been shown that the hybrid current controller has a superior steady-state and transient performance over the conventional carrier based PI controller. The performance of the proposed hybrid controller has been demonstrated by extensive simulations and experiments. It has also been shown that the linear compressor operates stably under the current feedback control and the piston stroke can be adjusted by varying the amplitude of the current command. © 2007 IEEE.
Resumo:
This paper proposes a constrained nonparametric method of estimating an input distance function. A regression function is estimated via kernel methods without functional form assumptions. To guarantee that the estimated input distance function satisfies its properties, monotonicity constraints are imposed on the regression surface via the constraint weighted bootstrapping method borrowed from statistics literature. The first, second, and cross partial analytical derivatives of the estimated input distance function are derived, and thus the elasticities measuring input substitutability can be computed from them. The method is then applied to a cross-section of 3,249 Norwegian timber producers.
Resumo:
The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem. © 2013 Published by Elsevier Ltd.