949 resultados para conformational map


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil and gas have been found in the Triassic strata of Wyoming. Although the Triassic has not as yet proven to be a large producing horizon it is very probable that ad­ditional oil will be found in Triassic strata in the future, and it is one of the goals at which oil well drillers aim their tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK1/2, noticeably influence ischemia/reperfusion injury (IRI). The complement inhibitor dextran sulfate (DXS) associates with damaged endothelium denudated of its heparan sulfate proteoglycan (HSPG) layer. Other glycosaminoglycan analogs are known to influence MAPK signaling. Hypothetically therefore, targeted intravascular cytoprotection by DXS may function in part through influencing MAPK activation to reduce IRI-induced damage of the vasculature. METHODS: IRI of the infrarenal aorta of male Wistar rats was induced by 90 minutes clamping followed by 120 minutes reperfusion. DXS (5 mg/mL) or physiologic saline (NaCl controls) was infused locally into the ischemic aortic segment immediately prior to reperfusion. Ninety minutes ischemia-only and heparinase infusion (maximal damage) experiments, as well as native rat aorta, served as controls. Aortas were excised following termination of the experiments for further analysis. RESULTS: DXS significantly inhibited IRI-induced JNK and ERK1/2 activation (P = .043; P =.005) without influencing the p38 pathway (P =.110). Reduced aortic injury, with significant inhibition of apoptosis (P = .032 for DXS vs NaCl), correlated with decreased nuclear factor kappaB translocation within the aortic wall. DXS treatment clearly reduced C1q, C4b/c, C3b/c, and C9 complement deposition, whilst preserving endothelial cell integrity and reducing reperfusion-induced HSPG shedding. Protection was associated with binding of fluorescein labeled DXS to ischemically damaged tissue. CONCLUSIONS: Local application of DXS into ischemic vasculature immediately prior to reperfusion reduces complement deposition and preserves endothelial integrity, partially through modulating activation of MAPKs and may offer a new approach to tackle IRI in vascular surgical procedures. CLINICAL RELEVANCE: The purpose of the present study was to determine the role of dextran sulfate (DXS), a glycosaminoglycan analog and complement inhibitor, in modulating intracellular MAPK signaling pathways, reducing complement activation and ultimately attenuating ischemia/reperfusion injury (IRI) in a rat aortic-clamping model, in part a surrogate model to study the microvasculature. The study shows a role for DXS in ameliorating endothelial injury by reducing IRI-mediated damage and intravascular, local inflammation in the affected aortic segment. DXS may be envisaged as an endothelial protectant in vascular injury, such as occurs during vascular surgical procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a modulus method for surface families inside a domain in the Heisenberg group and we prove that the stretch map between two Heisenberg spherical rings is a minimiser for the mean distortion among the class of contact quasiconformal maps between these rings which satisfy certain boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and OPEN ACCESS Materials 2013, 6 5292 suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degeneration of the intervertebral disc, sometimes associated with low back pain and abnormal spinal motions, represents a major health issue with high costs. A non-invasive degeneration assessment via qualitative or quantitative MRI (magnetic resonance imaging) is possible, yet, no relation between mechanical properties and T2 maps of the intervertebral disc (IVD) has been considered, albeit T2 relaxation time values quantify the degree of degeneration. Therefore, MRI scans and mechanical tests were performed on 14 human lumbar intervertebral segments freed from posterior elements and all soft tissues excluding the IVD. Degeneration was evaluated in each specimen using morphological criteria, qualitative T2 weighted images and quantitative axial T2 map data and stiffness was calculated from the load-deflection curves of in vitro compression, torsion, lateral bending and flexion/extension tests. In addition to mean T2, the OTSU threshold of T2 (TOTSU), a robust and automatic histogram-based method that computes the optimal threshold maximizing the distinction of two classes of values, was calculated for anterior, posterior, left and right regions of each annulus fibrosus (AF). While mean T2 and degeneration schemes were not related to the IVDs' mechanical properties, TOTSU computed in the posterior AF correlated significantly with those classifications as well as with all stiffness values. TOTSU should therefore be included in future degeneration grading schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While prior studies have focused on naïve (CD45RA+CD27+) and early stage memory (CD45RA-CD27+) CD8+ T cells, late memory CD8+ T cells (CD45RA+CD27) have received less interest because this subset of T cells is generally recognized as effectors, which produce IFNγ (but no IL-2) and perforin. However, multiple studies suggest that late memory CD8+ T cells may provide inadequate protection in infectious diseases and cancer models. To better understand the unique function of late memory CD8+ T cells, I optimized multi-color flow cytometry techniques to assess the cytokine production of each human CD8+ T cell maturation subset. I demonstrated that late memory CD8+ T cells are the predominant producer of CC chemokines (e.g. MIP-1β), but rarely produce IL-2; therefore they do not co-produce IL-2/IFNγ (polyfunctionality), which has been shown to be critical for protective immunity against chronic viral infection. These data suggest that late memory CD8+ T cells are not just cytotoxic effectors, but may have unique functional properties. Determining the molecular signature of each CD8+ T cell maturation subset will help characterize the role of late memory CD8+ T cells. Prior studies suggest that ERK1 and ERK2 play a role in cytokine production including IL-2 in T cells. Therefore, I tested whether differential expression of ERK1 and ERK2 in CD8+ T cell maturation subsets contributes to their functional signature by a novel flow cytometry technique. I found that the expression of total ERK1, but not ERK2, is significantly diminished in late memory CD8+ T cells and that ERK1 expression is strongly associated with IL-2 production and CD28 expression. I also found that IL-2 production is increased in late memory CD8+ T cells by over-expressing ERK1. Collectively, these data suggest that ERK1 is required for IL-2 production in human CD8+ T cells. In summary, this dissertation demonstrated that ERK1 is down-regulated in human late memory CD8+ T cells, leading to decreased production of IL-2. The data in this dissertation also suggested that the functional heterogeneity in human CD8+ T cell maturation subsets results from their differential ERK1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SET domain protein lysine methyltransferases (PKMT) are a structurally unique class of enzymes that catalyze the specific methylation of lysine residues in a number of different substrates. Especially histone-specific SET domain PKMTs have received widespread attention because of their roles in the regulation of epigenetic gene expression and the development of some cancers. Rubisco large subunit methyltransferase (RLSMT) is a chloroplast-localized SET domain PKMT responsible for the formation of trimethyl-lysine-14 in the large subunit of Rubisco, an essential photosynthetic enzyme. Here, we have used cryoelectron microscopy to produce an 11-A density map of the Rubisco-RLSMT complex. The atomic model of the complex, obtained by fitting crystal structures of Rubisco and RLSMT into the density map, shows that the extensive contact regions between the 2 proteins are mainly mediated by hydrophobic residues and leucine-rich repeats. It further provides insights into potential conformational changes that may occur during substrate binding and catalysis. This study presents the first structural analysis of a SET domain PKMT in complex with its intact polypeptide substrate.