926 resultados para cognitive models
Resumo:
This paper describes a method for analysing videogames based on game activities. It examines the impact of these activities on the player experience. The research approach applies heuristic checklists that deconstruct games in terms of cognitive processes that players engage in during gameplay (e.g., addressing goals, interpreting feedback). For this study we examined three puzzle games, Portal 2, I-Fluid and Braid. The Player Experience of Need Satisfaction (PENS) survey is used to measure player experience following gameplay. Cognitive action provided within games is examined in light of reported player experiences to determine the extent to which these activities influence players’ feelings of competence, autonomy, intuitive control and presence. Findings indicate that the positive experiences are directly influenced by game activity design. Our study also demonstrates the value of expert review in deconstructing gameplay activity as a means of providing direction for game design that enhances the player experience.
Resumo:
This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.
Resumo:
This paper evaluates the efficiency of a number of popular corpus-based distributional models in performing discovery on very large document sets, including online collections. Literature-based discovery is the process of identifying previously unknown connections from text, often published literature, that could lead to the development of new techniques or technologies. Literature-based discovery has attracted growing research interest ever since Swanson's serendipitous discovery of the therapeutic effects of fish oil on Raynaud's disease in 1986. The successful application of distributional models in automating the identification of indirect associations underpinning literature-based discovery has been heavily demonstrated in the medical domain. However, we wish to investigate the computational complexity of distributional models for literature-based discovery on much larger document collections, as they may provide computationally tractable solutions to tasks including, predicting future disruptive innovations. In this paper we perform a computational complexity analysis on four successful corpus-based distributional models to evaluate their fit for such tasks. Our results indicate that corpus-based distributional models that store their representations in fixed dimensions provide superior efficiency on literature-based discovery tasks.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.
Resumo:
Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.
Resumo:
This article examines manual textual categorisation by human coders with the hypothesis that the law of total probability may be violated for difficult categories. An empirical evaluation was conducted to compare a one step categorisation task with a two step categorisation task using crowdsourcing. It was found that the law of total probability was violated. Both a quantum and classical probabilistic interpretations for this violation are presented. Further studies are required to resolve whether quantum models are more appropriate for this task.
Resumo:
This project’s aim was to create new experimental models in small animals for the investigation of infections related to bone fracture fixation implants. Animal models are essential in orthopaedic trauma research and this study evaluated new implants and surgical techniques designed to improve standardisation in these experiments, and ultimately to minimise the number of animals needed in future work. This study developed and assessed procedures using plates and inter-locked nails to stabilise fractures in rabbit thigh bones. Fracture healing was examined with mechanical testing and histology. The results of this work contribute to improvements in future small animal infection experiments.
Resumo:
Pavlovian fear conditioning is a robust technique for examining behavioral and cellular components of fear learning and memory. In fear conditioning, the subject learns to associate a previously neutral stimulus with an inherently noxious co-stimulus. The learned association is reflected in the subjects' behavior upon subsequent re-exposure to the previously neutral stimulus or the training environment. Using fear conditioning, investigators can obtain a large amount of data that describe multiple aspects of learning and memory. In a single test, researchers can evaluate functional integrity in fear circuitry, which is both well characterized and highly conserved across species. Additionally, the availability of sensitive and reliable automated scoring software makes fear conditioning amenable to high-throughput experimentation in the rodent model; thus, this model of learning and memory is particularly useful for pharmacological and toxicological screening. Due to the conserved nature of fear circuitry across species, data from Pavlovian fear conditioning are highly translatable to human models. We describe equipment and techniques needed to perform and analyze conditioned fear data. We provide two examples of fear conditioning experiments, one in rats and one in mice, and the types of data that can be collected in a single experiment. © 2012 Springer Science+Business Media, LLC.
Resumo:
Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.
Resumo:
This study examined the impact of a social-cognitive teaching strategy, the community of inquiry, on the functioning of six Year 4 students with learning difficulties. Results indicated that the students became more self-regulated in their learning and developed greater academic self-efficacy and stronger reading comprehension skills. Although the degree of development varied across the group, the results indicated that all six students (in addition to their class peers) benefited from actively engaging in scaffolded opportunities for intellectual and social exchange in a whole class setting. Accordingly, the findings of this study have implications for approaches to supporting the development and learning of students with learning difficulties.
Communication models of institutional online communities : the role of the ABC cultural intermediary
Resumo:
The co-creation of cultural artefacts has been democratised given the recent technological affordances of information and communication technologies. Web 2.0 technologies have enabled greater possibilities of citizen inclusion within the media conversations of their nations. For example, the Australian audience has more opportunities to collaboratively produce and tell their story to a broader audience via the public service media (PSM) facilitated platforms of the Australian Broadcasting Corporation (ABC). However, providing open collaborative production for the audience gives rise to the problem, how might the PSM manage the interests of all the stakeholders and align those interests with its legislated Charter? This paper considers this problem through the ABC’s user-created content participatory platform, ABC Pool and highlights the cultural intermediary as the role responsible for managing these tensions. This paper also suggests cultural intermediation is a useful framework for other media organisations engaging in co-creative activities with their audiences.
Communication models of institutional online communities : the role of the ABC cultural intermediary
Resumo:
The co-creation of cultural artefacts has been democratised given the recent technological affordances of information and communication technologies. Web 2.0 technologies have enabled greater possibilities of citizen inclusion within the media conversations of their nations. For example, the Australian audience has more opportunities to collaboratively produce and tell their story to a broader audience via the public service media (PSM) facilitated platforms of the Australian Broadcasting Corporation (ABC). However, providing open collaborative production for the audience gives rise to the problem, how might the PSM manage the interests of all the stakeholders and align those interests with its legislated Charter? This paper considers this problem through the ABC’s user-created content participatory platform, ABC Pool and highlights the cultural intermediary as the role responsible for managing these tensions. This paper also suggests cultural intermediation is a useful framework for other media organisations engaging in co-creative activities with their audiences.
Resumo:
Digital Human Models (DHM) have been used for over 25 years. They have evolved from simple drawing templates, which are nowadays still used in architecture, to complex and Computer Aided Engineering (CAE) integrated design and analysis tools for various ergonomic tasks. DHM are most frequently used for applications in product design and production planning, with many successful implementations documented. DHM from other domains, as for example computer user interfaces, artificial intelligence, training and education, or the entertainment industry show that there is also an ongoing development towards a comprehensive understanding and holistic modeling of human behavior. While the development of DHM for the game sector has seen significant progress in recent years, advances of DHM in the area of ergonomics have been comparatively modest. As a consequence, we need to question if current DHM systems are fit for the design of future mobile work systems. So far it appears that DHM in Ergonomics are rather limited to some traditional applications. According to Dul et al. (2012), future characteristics of Human Factors and Ergonomics (HFE) can be assigned to six main trends: (1) global change of work systems, (2) cultural diversity, (3) ageing, (4) information and communication technology (ICT), (5) enhanced competiveness and the need for innovation, and; (6) sustainability and corporate social responsibility. Based on a literature review, we systematically investigate the capabilities of current ergonomic DHM systems versus the ‘Future of Ergonomics’ requirements. It is found that DHMs already provide broad functionality in support of trends (1) and (2), and more limited options in regards to trend (3). Today’s DHM provide access to a broad range of national and international databases for correct differentiation and characterization of anthropometry for global populations. Some DHM explicitly address social and cultural modeling of groups of people. In comparison, the trends of growing importance of ICT (4), the need for innovation (5) and sustainability (6) are addressed primarily from a hardware-oriented and engineering perspective and not reflected in DHM. This reflects a persistent separation between hardware design (engineering) and software design (information technology) in the view of DHM – a disconnection which needs to be urgently overcome in the era of software defined user interfaces and mobile devices. The design of a mobile ICT-device is discussed to exemplify the need for a comprehensive future DHM solution. Designing such mobile devices requires an approach that includes organizational aspects as well as technical and cognitive ergonomics. Multiple interrelationships between the different aspects result in a challenging setting for future DHM. In conclusion, the ‘Future of Ergonomics’ pose particular challenges for DHM in regards to the design of mobile work systems, and moreover mobile information access.
Resumo:
The Australian Commission on Safety and Quality in Health Care commissioned this rapid review to identify recent evidence in relation to three key questions: 1. What is the current evidence of quality and safety issues regarding the hospital experience of people with cognitive impairment (dementia/delirium)? 2. What are the existing evidence-based pathways, best practice or guidelines for cognitive impairment in hospitals? 3. What are the key components of an ideal patient journey for a person with dementia and/or delirium? The purpose of this review is to identify best practice in caring for patients with cognitive impairment (CI) in acute hospital settings. CI refers to patients with dementia and delirium but can include other conditions. For the purposes of this report, ‘Hospitals’ is defined as acute care settings and includes care provided by acute care institutions in other settings (e.g. Multipurpose Services and Hospital in the Home). It does not include residential aged care settings nor palliative care services that are not part of a service provided by an acute care institution. Method Both peer-reviewed publications and the grey literature were comprehensively searched for recent (primarily post 2010) publications, reports and guidelines that addressed the three key questions. The literature was evaluated and graded according to the National Health and Medical Research Council (NHMRC) levels of criteria (see Evidence Summary – Appendix B). Results Thirty-one recent publications were retrieved in relation to quality and safety issues faced by people with CI in acute hospitals. The results indicate that CI is a common problem in hospitals (upwards of 30% - the rate increases with increasing patient age), although this is likely to be an underestimate, in part, due to numbers of patients without a formal dementia diagnosis. There is a large body of evidence showing that patients with CI have worse outcomes than patients without CI following hospitalisation including increased mortality, more complications, longer hospital stays, increased system costs as well as functional and cognitive decline. 4 To improve the care of patients with CI in hospital, best practice guidelines have been developed, of which sixteen recent guidelines/position statements/standards were identified in this review (Table 2). Four guidelines described standards or quality indicators for providing optimal care for the older person with CI in hospital, in general, while three focused on delirium diagnosis, prevention and management. The remaining guidelines/statements focused on specific issues in relation to the care of patients with CI in acute hospitals including hydration, nutrition, wandering and care in the Emergency Department (ED). A key message in several of the guidelines was that older patients should be assessed for CI at admission and this is particularly important in the case of delirium, which can indicate an emergency, in order to implement treatment. A second clear mess...