918 resultados para cognitive dimension
Resumo:
The Bronze to Iron Age transition in Crete, a period of state collapse and insecurity, saw the island's rugged, high-contrast topography used in striking new ways. The visual drama of many of the new site locations has stimulated significant research over the last hundred years, with explanation of the change as the main focus. The new sites are not monumental in character: the vast majority are settlements, and much of the information about them comes from survey. Perhaps as a result, the new site map has not been much studied from phenomenological perspectives. A focus on the visual and experiential aspects of the new landscape can offer valuable insights into social structures at this period, and illuminate social developments prefiguring the emergence of polis states in Crete by c. 700 BC. To develop, share and evaluate this type of integrated study, digital reconstructive techniques are still under-used in this region. I highlight their potential value in addressing a regularly-identified shortcoming of phenomenological approaches-their necessarily subjective emphasis.
Resumo:
The Bronze to Iron Age transition in Crete, a period of state collapse and insecurity, saw the island's rugged, high-contrast topography used in striking new ways. The visual drama of many of the new site locations has stimulated significant research over the last hundred years, with explanation of the change as the main focus. The new sites are not monumental in character: the vast majority are settlements, and much of the information about them comes from survey. Perhaps as a result, the new site map has not been much studied from phenomenological perspectives. A focus on the visual and experiential aspects of the new landscape can offer valuable insights into social structures at this period, and illuminate social developments prefiguring the emergence of polis states in Crete by c. 700 BC. To develop, share and evaluate this type of integrated study, digital reconstructive techniques are still under-used in this region. I highlight their potential value in addressing a regularly-identified shortcoming of phenomenological approaches-their necessarily subjective emphasis.
Resumo:
Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.
Resumo:
The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64–66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease > maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease > maintain) and monotonic changes in EDA (increase > maintain > decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Resumo:
There is substantial evidence for the effectiveness of psychological treatments for OCD, and various approaches have been widely recommended. These approaches tend to be characterized by exposure and response prevention (ERP) and also tend to be applied equally to all forms of OCD. Patients/clients (and some therapists) often find ERP to be a difficult treatment, and both dropout and refusal rates are unacceptably high. Based on specific cognitive conceptualizations of different manifestations of OCD, new and refined cognitive treatment methods are now available. The present article describes a specific cognitively based approach to the treatment of compulsive checking.
Resumo:
A new wave of computerised therapy is under development which, rather than simulating talking therapies, uses bias modification techniques to target the core psychological process underlying anxiety. Such interventions are aimed at anxiety disorders, and are yet to be adapted for co-morbid anxiety in psychosis. The cognitive bias modification (CBM) paradigm delivers repeated exposure to stimuli in order to train individuals to resolve ambiguous information in a positive, rather than anxiety provoking, manner. The current study is the first to report data from a modified form of CBM which targets co-morbid anxiety within individuals diagnosed with schizophrenia. Our version of CBM involved exposure to one hundred vignettes presented over headphones. Participants were instructed to actively simulate the described scenarios via visual imagery. Twenty-one participants completed both a single session of CBM and a single control condition session in counter-balanced order. Within the whole sample, there was no significant improvement on interpretation bias of CBM or state anxiety, relative to the control condition. However, in line with previous research, those participants who engage in higher levels of visual imagery exhibited larger changes in interpretation bias. We discuss the implications for harnessing computerised CBM therapy developments for co-morbid anxiety in schizophrenia.
Resumo:
Objective: To evaluate CBTp delivered by non-expert therapists, using CBT relevant measures. Methods: Participants (N=74) were randomised into immediate therapy or waiting list control groups. The therapy group was offered six months of therapy and followed up three months later. The waiting list group received therapy after waiting nine months (becoming the delayed therapy group). Results: Depression improved in the combined therapy group at both the end of therapy and follow-up. Other significant effects were found in only one of the two therapy groups (positive symptoms; cognitive flexibility; uncontrollability of thoughts) or one of the two timepoints (end of therapy: PANSS general symptoms, anxiety, suicidal ideation, social functioning, resistance to voices; follow-up: power beliefs about voices, negative symptoms). There was no difference in costs between the groups. Conclusions: The only robust improvement was in depression. Nevertheless, there were further encouraging but modest improvements in both emotional and cognitive variables, in addition to psychotic symptoms.
Resumo:
Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.