955 resultados para chronic renal disease
Resumo:
Renin angiotensin system (RAS) blockers are generally considered as contraindicated when an atheromatous renal artery stenosis (ARAS) is diagnosed. The main reason is the fear of inducing renal ischemia and, hence, accelerating renal fibrosis and the progression towards end stage renal disease, albeit RAS blocker have been shown to be highly effective in controlling blood pressure. Part of the solution came by the development of the revascularization. There is now growing evidence showing no superiority of angioplasty over medical treatment on cardiovascular events and mortality, renal function and blood pressure control. Hence, RAS blockers resurfaced based on their proven beneficial effects on blood pressure control and cardiovascular prevention in high risk atherosclerotic patients. Thus, RAS blockers belong today to the standard treatment of hypertensive patients with ARAS. However they were not systematically prescribed in trials focusing on ARAS. The ongoing CORAL trial will give us further information on the place of this class of antihypertensive drugs in patients with ARAS.
Resumo:
End-stage renal disease patients have endothelial dysfunction and high plasma levels of ADMA (asymmetric omega-NG,NG-dimethylarginine), an endogenous inhibitor of NOS (NO synthase). The actual link between these abnormalities is controversial. Therefore, in the present study, we investigated whether HD (haemodialysis) has an acute impact on NO-dependent vasodilation and plasma ADMA in these patients. A total of 24 patients undergoing maintenance HD (HD group) and 24 age- and gender-matched healthy controls (Control group) were enrolled. The increase in forearm SkBF (skin blood flow) caused by local heating to 41 degrees C (SkBF41), known to depend on endothelial NO production, was determined with laser Doppler imaging. SkBF41 was expressed as a percentage of the vasodilatory reserve obtained from the maximal SkBF induced by local heating to 43 degrees C (independent of NO). In HD patients, SkBF41 was assessed on two successive HD sessions, once immediately before and once immediately after HD. Plasma ADMA was assayed simultaneously with MS/MS (tandem MS). In the Control group, SkBF41 was determined twice, on two different days, and plasma ADMA was assayed once. In HD patients, SkBF41 was identical before (82.2+/-13.1%) and after (82.7+/-12.4%) HD, but was lower than in controls (day 1, 89.6+/-6.1; day 2, 89.2+/-6.9%; P<0.01 compared with the HD group). In contrast, plasma ADMA was higher before (0.98+/-0.17 micromol/l) than after (0.58+/-0.10 micromol/l; P<0.01) HD. ADMA levels after HD did not differ from those obtained in controls (0.56+/-0.11 micromol/l). These findings show that HD patients have impaired NO-dependent vasodilation in forearm skin, an abnormality not acutely reversed by HD and not explained by ADMA accumulation.
Resumo:
BACKGROUND: Chronic kidney disease is associated with cardiovascular disease. We tested for evidence of a shared genetic basis to these traits. STUDY DESIGN: We conducted 2 targeted analyses. First, we examined whether known single-nucleotide polymorphisms (SNPs) underpinning kidney traits were associated with a series of vascular phenotypes. Additionally, we tested whether vascular SNPs were associated with markers of kidney damage. Significance was set to 1.5×10(-4) (0.05/325 tests). SETTING & PARTICIPANTS: Vascular outcomes were analyzed in participants from the AortaGen (20,634), CARDIoGRAM (86,995), CHARGE Eye (15,358), CHARGE IMT (31,181), ICBP (69,395), and NeuroCHARGE (12,385) consortia. Tests for kidney outcomes were conducted in up to 67,093 participants from the CKDGen consortium. PREDICTOR: We used 19 kidney SNPs and 64 vascular SNPs. OUTCOMES & MEASUREMENTS: Vascular outcomes tested were blood pressure, coronary artery disease, carotid intima-media thickness, pulse wave velocity, retinal venular caliber, and brain white matter lesions. Kidney outcomes were estimated glomerular filtration rate and albuminuria. RESULTS: In general, we found that kidney disease variants were not associated with vascular phenotypes (127 of 133 tests were nonsignificant). The one exception was rs653178 near SH2B3 (SH2B adaptor protein 3), which showed direction-consistent association with systolic (P = 9.3 ×10(-10)) and diastolic (P = 1.6 ×10(-14)) blood pressure and coronary artery disease (P = 2.2 ×10(-6)), all previously reported. Similarly, the 64 SNPs associated with vascular phenotypes were not associated with kidney phenotypes (187 of 192 tests were nonsignificant), with the exception of 2 high-correlated SNPs at the SH2B3 locus (P = 1.06 ×10(-07) and P = 7.05 ×10(-08)). LIMITATIONS: The combined effect size of the SNPs for kidney and vascular outcomes may be too low to detect shared genetic associations. CONCLUSIONS: Overall, although we confirmed one locus (SH2B3) as associated with both kidney and cardiovascular disease, our primary findings suggest that there is little overlap between kidney and cardiovascular disease risk variants in the overall population. The reciprocal risks of kidney and cardiovascular disease may not be genetically mediated, but rather a function of the disease milieu itself.
Resumo:
BACKGROUND: Chronic liver disease in human immunodeficiency virus (HIV)-infected patients is mostly caused by hepatitis virus co-infection. Other reasons for chronic alanine aminotransferase (ALT) elevation are more difficult to diagnose. METHODS: We studied the incidence of and risk factors for chronic elevation of ALT levels (greater than the upper limit of normal at 2 consecutive semi-annual visits) in participants of the Swiss HIV Cohort Study without hepatitis B virus (HBV) or hepatitis C virus (HCV) infection who were seen during the period 2002-2008. Poisson regression analysis was used. RESULTS: A total of 2365 participants were followed up for 9972 person-years (median age, 38 years; male sex, 66%; median CD4+ cell count, 426/microL; receipt of antiretroviral therapy [ART], 56%). A total of 385 participants (16%) developed chronic elevated ALT levels, with an incidence of 3.9 cases per 100 person-years (95% confidence interval [CI], 3.5-4.3 cases per 100 person-years). In multivariable analysis, chronic elevated ALT levels were associated with HIV RNA level >100,000 copies/mL (incidence rate ratio [IRR], 2.23; 95% CI, 1.45-3.43), increased body mass index (BMI, defined as weight in kilograms divided by the square of height in meters) (BMI of 25-29.9 was associated with an IRR of 1.56 [95% CI, 1.24-1.96]; a BMI 30 was associated with an IRR of 1.70 [95% CI, 1.16-2.51]), severe alcohol use (1.83 [1.19-2.80]), exposure to stavudine (IRR per year exposure, 1.12 [95% CI, 1.07-1.17]) and zidovudine (IRR per years of exposure, 1.04 [95% CI, 1.00-1.08]). Associations with cumulative exposure to combination ART, nucleoside reverse-transcriptase inhibitors, and unboosted protease inhibitors did not remain statistically significant after adjustment for exposure to stavudine. Black ethnicity was inversely correlated (IRR, 0.52 [95% CI, 0.33-0.82]). Treatment outcome and mortality did not differ between groups with and groups without elevated ALT levels. CONCLUSIONS: Among patients without hepatitis virus co-infection, the incidence of chronic elevated ALT levels was 3.9 cases per 100 person-years, which was associated with high HIV RNA levels, increased BMI, severe alcohol use, and prolonged stavudine and zidovudine exposure. Long-term follow-up is needed to assess whether chronic elevation of ALT levels will result in increased morbidity or mortality.
Resumo:
Anorexia nervosa (AN) is a severe and potentially lethal disease of the young woman. It is defined as an anxious disorder not to gain weight, and an obsessive behavior regarding body weight and physical appearance. Different and variable patterns of behaviour are observed. This article focuses on the renal problems observed in anorexic patients. Anorexia is often associated with severe electrolyte disturbances, such as hypokalemia and hypophosphatemia, and alterations of water metabolism with hyponatremia and edema. Hypokalemia and chronic dehydration may contribute to the development of renal failure. Even end stage renal disease can be observed in these patients. A better understanding of the pathophysiology might improve treatment of patients suffering from AN.
Resumo:
We report the case of an inaugural episode of generalized seizures in a 40-year-old male with a history of chronic kidney disease associated with TSC2-PKD1 contiguous gene syndrome. This patient was under prophylactic treatment of phenytoin since 2 years because of a subarachnoid hemorrhage due to a ruptured cerebral aneurysm. Laboratory results revealed therapeutic range of phenytoin levels, but severe hypocalcemia associated with profound vitamin D deficiency that could not be explained by secondary hyperparathyroidism alone. The interaction of phenytoin on the P-450 cytochromes activity has been demonstrated to accelerate the rate of 25-hydroxivitamin D3 and 1α,25-dihydroxivitamin D3 catabolism into inactive metabolites, leading to hypocalcemia. Physicians should be aware of significant phenytoin interactions on vitamin D metabolism which may lead to symptomatic hypocalcemia in patients with chronic kidney disease.
Resumo:
Renal osteodystrophy is an amalgam of a number of distinct pathological conditions, in particular, hyperparathyroidism and osteomalacia. In addition, there may be a change in the guantity of bone, i.e., osteopenia (osteoporosis) or osteosclerosis. While bone biopsy may be the most reliable method for detecting these lesions, it is not yet a routine procedure in many centers. Radiological assessment of the bones, therefore, is the most widely used method for assessing the type and severity of the bone lesions in patients with chronic renal failure. This article reviews the world literature and pays attention to conventional radiological techniques as well as macroradiography. In addition, studies in which radiological appearances are correlated with histological appearances are described. Mention is also made of the effects on radiological bone disease of dialysis and transplantation. Consideration is also given to the manifestations of soft-tissue calcification, both of the vascular and subcutaneous type, and to the effects of treatment.
Resumo:
BACKGROUND: Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD: We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS: For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION: For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.
Resumo:
BACKGROUND: Chronic kidney disease (CKD) accelerates vascular stiffening related to age. Arterial stiffness may be evaluated measuring the carotid-femoral pulse wave velocity (PWV) or more simply, as recommended by KDOQI, monitoring pulse pressure (PP). Both correlate to survival and incidence of cardiovascular disease. PWV can also be estimated on the brachial artery using a Mobil-O-Graph; a non-operator dependent automatic device. The aim was to analyse whether, in a dialysis population, PWV obtained by Mobil-O-Graph (MogPWV) is more sensitive for vascular aging than PP. METHODS: A cohort of 143 patients from 4 dialysis units has been followed measuring MogPWV and PP every 3 to 6 months and compared to a control group with the same risk factors but an eGFR > 30 ml/min. RESULTS: MogPWV contrarily to PP did discriminate the dialysis population from the control group. The mean difference translated in age between the two populations was 8.4 years. The increase in MogPWV, as a function of age, was more rapid in the dialysis group. 13.3% of the dialysis patients but only 3.0% of the control group were outliers for MogPWV. The mortality rate (16 out of 143) was similar in outliers and inliers (7.4 and 8.0%/year). Stratifying patients according to MogPWV, a significant difference in survival was seen. A high parathormone (PTH) and to be dialysed for a hypertensive nephropathy were associated to a higher baseline MogPWV. CONCLUSIONS: Assessing PWV on the brachial artery using a Mobil-O-Graph is a valid and simple alternative, which, in the dialysis population, is more sensitive for vascular aging than PP. As demonstrated in previous studies PWV correlates to mortality. Among specific CKD risk factors only PTH is associated with a higher baseline PWV. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02327962.
Resumo:
Se defi ne como síndrome metabólico al conjunto de factores que se dan en un individuo que le llevan a presentar resistencias a la insulina con hiperinsulinismo compensador que se asocia a trastornos del metabolismo hidrocarbonado, hipertensión arterial, alteraciones lipídicas y obesidad. Esta demostrado que este síndrome aumenta la posibilidad de padecer una enfermedad cardiovascular o diabetes mellitus por lo que se considera un factor de riesgo cardiovascular y de mortalidad en la población general. En pacientes...
Resumo:
Eighty percent of the global 17 million deaths due to cardiovascular disease (CVD) occur in low and middle income countries (LMICs). The burden of CVD and other noncommunicable diseases (NCDs) is expected to markedly increase because of the global aging of the population and increasing exposure to detrimental lifestyle-related risk in LMICs. Interventions to reduce four main risks related to modifiable behaviors (tobacco use, unhealthy diet, low physical activity and excess alcohol consumption) are key elements for effective primary prevention of the four main NCDs (CVD, cancer, diabetes and chronic pulmonary disease). These behaviors are best improved through structural interventions (e.g., clean air policy, taxes on cigarettes, new recipes for processed foods with reduced salt and fat, urban shaping to improve mobility, etc.). In addition, health systems in LMICs should be reoriented to deliver integrated cost-effective treatment to persons at high risk at the primary health care level. The full implementation of a small number of highly cost effective, affordable and scalable interventions ("best buys") is likely to be the necessary and sufficient ingredient for curbing NCDs in LMICs. NCDs are both a cause and a consequence of poverty. It is therefore important to frame NCD prevention and control within the broader context of social determinants and development agenda. The recent emphasis on NCDs at a number of health and economic forums (including the September 2011 High Level Meeting on NCDs at the United Nations) provides a new opportunity to move the NCD agenda forward in LMICs.
Resumo:
BACKGROUND: To determine the clinical presentation, current treatment and outcome of children with nonbacterial inflammatory bone disease. METHODS: Retrospective multicenter study of patients entered into the Swiss Pediatric Rheumatology Working Group registry with a diagnosis of chronic nonbacterial osteomyelitis (CNO) and synovitis acne pustulosis hyperostosis osteitis (SAPHO) syndrome. The charts were reviewed for informations about disease presentation, treatment, course and outcome. RESULTS: Forty-one children (31 girls and 10 boys) from 6 pediatric hospitals in Switzerland diagnosed between 1995 and 2010 were included in the study. The diagnosis was multifocal CNO (n = 33), unifocal CNO (n = 4) and SAPHO syndrome (n = 4). Mean age at onset of CNO was 9.5 years (range 1.4-15.6) and mean follow-up time was 52 months (range 6-156 months). Most patients (n = 27) had a chronic persistent disease course (>6 months), 8 patients had a course with one or more relapses and 6 patients had only one episode of CNO. Forty nine percent had received at least one course of antibiotics. In 57% treatment with nonsteroidal anti-inflammatory drugs (NSAID) was sufficient to control the disease. Twelve out of 16 children with NSAID failure subsequently received corticosteroids, methotrexate, TNF α inhibitors, bisphosphonates or a combination of these drugs. CONCLUSIONS: In a multicenter cohort of 41 children 22% started with unifocal lesion with a significant diagnostic delay. A higher proportion presented with chronic persistent disease than with a recurrent form. An osteomyelitis in the pelvic region is significantly associated with other features of juvenile spondylarthritis.
Resumo:
Atherosclerosis is a chronic cardiovascular disease that involves the thicken¬ing of the artery walls as well as the formation of plaques (lesions) causing the narrowing of the lumens, in vessels such as the aorta, the coronary and the carotid arteries. Magnetic resonance imaging (MRI) is a promising modality for the assessment of atherosclerosis, as it is a non-invasive and patient-friendly procedure that does not use ionizing radiation. MRI offers high soft tissue con¬trast already without the need of intravenous contrast media; while modifica¬tion of the MR pulse sequences allows for further adjustment of the contrast for specific diagnostic needs. As such, MRI can create angiographic images of the vessel lumens to assess stenoses at the late stage of the disease, as well as blood flow-suppressed images for the early investigation of the vessel wall and the characterization of the atherosclerotic plaques. However, despite the great technical progress that occurred over the past two decades, MRI is intrinsically a low sensitive technique and some limitations still exist in terms of accuracy and performance. A major challenge for coronary artery imaging is respiratory motion. State- of-the-art diaphragmatic navigators rely on an indirect measure of motion, per¬form a ID correction, and have long and unpredictable scan time. In response, self-navigation (SM) strategies have recently been introduced that offer 100% scan efficiency and increased ease of use. SN detects respiratory motion di¬rectly from the image data obtained at the level of the heart, and retrospectively corrects the same data before final image reconstruction. Thus, SN holds po-tential for multi-dimensional motion compensation. To this regard, this thesis presents novel SN methods that estimate 2D and 3D motion parameters from aliased sub-images that are obtained from the same raw data composing the final image. Combination of all corrected sub-images produces a final image with reduced motion artifacts for the visualization of the coronaries. The first study (section 2.2, 2D Self-Navigation with Compressed Sensing) consists of a method for 2D translational motion compensation. Here, the use of com- pressed sensing (CS) reconstruction is proposed and investigated to support motion detection by reducing aliasing artifacts. In healthy human subjects, CS demonstrated an improvement in motion detection accuracy with simula¬tions on in vivo data, while improved coronary artery visualization was demon¬strated on in vivo free-breathing acquisitions. However, the motion of the heart induced by respiration has been shown to occur in three dimensions and to be more complex than a simple translation. Therefore, the second study (section 2.3,3D Self-Navigation) consists of a method for 3D affine motion correction rather than 2D only. Here, different techniques were adopted to reduce background signal contribution in respiratory motion tracking, as this can be adversely affected by the static tissue that surrounds the heart. The proposed method demonstrated to improve conspicuity and vi¬sualization of coronary arteries in healthy and cardiovascular disease patient cohorts in comparison to a conventional ID SN method. In the third study (section 2.4, 3D Self-Navigation with Compressed Sensing), the same tracking methods were used to obtain sub-images sorted according to the respiratory position. Then, instead of motion correction, a compressed sensing reconstruction was performed on all sorted sub-image data. This process ex¬ploits the consistency of the sorted data to reduce aliasing artifacts such that the sub-image corresponding to the end-expiratory phase can directly be used to visualize the coronaries. In a healthy volunteer cohort, this strategy improved conspicuity and visualization of the coronary arteries when compared to a con¬ventional ID SN method. For the visualization of the vessel wall and atherosclerotic plaques, the state- of-the-art dual inversion recovery (DIR) technique is able to suppress the signal coming from flowing blood and provide positive wall-lumen contrast. How¬ever, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. In response and as a fourth study of this thesis (chapter 3, Vessel Wall MRI of the Carotid Arteries), a phase-sensitive DIR method has been implemented and tested in the carotid arteries of a healthy volunteer cohort. By exploiting the phase information of images acquired after DIR, the proposed phase-sensitive method enhances wall-lumen contrast while widens the window of opportunity for image acquisition. As a result, a 3-fold increase in volumetric coverage is obtained at no extra cost in scanning time, while image quality is improved. In conclusion, this thesis presented novel methods to address some of the main challenges for MRI of atherosclerosis: the suppression of motion and flow artifacts for improved visualization of vessel lumens, walls and plaques. Such methods showed to significantly improve image quality in human healthy sub¬jects, as well as scan efficiency and ease-of-use of MRI. Extensive validation is now warranted in patient populations to ascertain their diagnostic perfor¬mance. Eventually, these methods may bring the use of atherosclerosis MRI closer to the clinical practice. Résumé L'athérosclérose est une maladie cardiovasculaire chronique qui implique le épaississement de la paroi des artères, ainsi que la formation de plaques (lé¬sions) provoquant le rétrécissement des lumières, dans des vaisseaux tels que l'aorte, les coronaires et les artères carotides. L'imagerie par résonance magné¬tique (IRM) est une modalité prometteuse pour l'évaluation de l'athérosclérose, car il s'agit d'une procédure non-invasive et conviviale pour les patients, qui n'utilise pas des rayonnements ionisants. L'IRM offre un contraste des tissus mous très élevé sans avoir besoin de médias de contraste intraveineux, tan¬dis que la modification des séquences d'impulsions de RM permet en outre le réglage du contraste pour des besoins diagnostiques spécifiques. À ce titre, l'IRM peut créer des images angiographiques des lumières des vaisseaux pour évaluer les sténoses à la fin du stade de la maladie, ainsi que des images avec suppression du flux sanguin pour une première enquête des parois des vais¬seaux et une caractérisation des plaques d'athérosclérose. Cependant, malgré les grands progrès techniques qui ont eu lieu au cours des deux dernières dé¬cennies, l'IRM est une technique peu sensible et certaines limitations existent encore en termes de précision et de performance. Un des principaux défis pour l'imagerie de l'artère coronaire est le mou¬vement respiratoire. Les navigateurs diaphragmatiques de pointe comptent sur une mesure indirecte de mouvement, effectuent une correction 1D, et ont un temps d'acquisition long et imprévisible. En réponse, les stratégies d'auto- navigation (self-navigation: SN) ont été introduites récemment et offrent 100% d'efficacité d'acquisition et une meilleure facilité d'utilisation. Les SN détectent le mouvement respiratoire directement à partir des données brutes de l'image obtenue au niveau du coeur, et rétrospectivement corrigent ces mêmes données avant la reconstruction finale de l'image. Ainsi, les SN détiennent un poten¬tiel pour une compensation multidimensionnelle du mouvement. A cet égard, cette thèse présente de nouvelles méthodes SN qui estiment les paramètres de mouvement 2D et 3D à partir de sous-images qui sont obtenues à partir des mêmes données brutes qui composent l'image finale. La combinaison de toutes les sous-images corrigées produit une image finale pour la visualisation des coronaires ou les artefacts du mouvement sont réduits. La première étude (section 2.2,2D Self-Navigation with Compressed Sensing) traite d'une méthode pour une compensation 2D de mouvement de translation. Ici, on étudie l'utilisation de la reconstruction d'acquisition comprimée (compressed sensing: CS) pour soutenir la détection de mouvement en réduisant les artefacts de sous-échantillonnage. Chez des sujets humains sains, CS a démontré une amélioration de la précision de la détection de mouvement avec des simula¬tions sur des données in vivo, tandis que la visualisation de l'artère coronaire sur des acquisitions de respiration libre in vivo a aussi été améliorée. Pourtant, le mouvement du coeur induite par la respiration se produit en trois dimensions et il est plus complexe qu'un simple déplacement. Par conséquent, la deuxième étude (section 2.3, 3D Self-Navigation) traite d'une méthode de cor¬rection du mouvement 3D plutôt que 2D uniquement. Ici, différentes tech¬niques ont été adoptées pour réduire la contribution du signal du fond dans le suivi de mouvement respiratoire, qui peut être influencé négativement par le tissu statique qui entoure le coeur. La méthode proposée a démontré une amélioration, par rapport à la procédure classique SN de correction 1D, de la visualisation des artères coronaires dans le groupe de sujets sains et des pa¬tients avec maladies cardio-vasculaires. Dans la troisième étude (section 2.4,3D Self-Navigation with Compressed Sensing), les mêmes méthodes de suivi ont été utilisées pour obtenir des sous-images triées selon la position respiratoire. Au lieu de la correction du mouvement, une reconstruction de CS a été réalisée sur toutes les sous-images triées. Cette procédure exploite la cohérence des données pour réduire les artefacts de sous- échantillonnage de telle sorte que la sous-image correspondant à la phase de fin d'expiration peut directement être utilisée pour visualiser les coronaires. Dans un échantillon de volontaires en bonne santé, cette stratégie a amélioré la netteté et la visualisation des artères coronaires par rapport à une méthode classique SN ID. Pour la visualisation des parois des vaisseaux et de plaques d'athérosclérose, la technique de pointe avec double récupération d'inversion (DIR) est capa¬ble de supprimer le signal provenant du sang et de fournir un contraste posi¬tif entre la paroi et la lumière. Pourtant, il est difficile d'obtenir un contraste optimal car cela est soumis à la variabilité du rythme cardiaque. Par ailleurs, l'imagerie DIR est inefficace du point de vue du temps et les acquisitions "mul- tislice" peuvent conduire à des temps de scan prolongés. En réponse à ce prob¬lème et comme quatrième étude de cette thèse (chapitre 3, Vessel Wall MRI of the Carotid Arteries), une méthode de DIR phase-sensitive a été implémenté et testé
Resumo:
Molecular evidence suggests that levels of vitamin D are associated with kidney function loss. Still, population-based studies are limited and few have considered the potential confounding effect of baseline kidney function. This study evaluated the association of serum 25-hydroxyvitamin D with change in eGFR, rapid eGFR decline, and incidence of CKD and albuminuria. Baseline (2003-2006) and 5.5-year follow-up data from a Swiss adult general population were used to evaluate the association of serum 25-hydroxyvitamin D with change in eGFR, rapid eGFR decline (annual loss >3 ml/min per 1.73 m(2)), and incidence of CKD and albuminuria. Serum 25-hydroxyvitamin D was measured at baseline using liquid chromatography-tandem mass spectrometry. eGFR and albuminuria were collected at baseline and follow-up. Multivariate linear and logistic regression models were used considering potential confounding factors. Among the 4280 people included in the analysis, the mean±SD annual eGFR change was -0.57±1.78 ml/min per 1.73 m(2), and 287 (6.7%) participants presented rapid eGFR decline. Before adjustment for baseline eGFR, baseline 25-hydroxyvitamin D level was associated with both mean annual eGFR change and risk of rapid eGFR decline, independently of baseline albuminuria. Once adjusted for baseline eGFR, associations were no longer significant. For every 10 ng/ml higher baseline 25-hydroxyvitamin D, the adjusted mean annual eGFR change was -0.005 ml/min per 1.73 m(2) (95% confidence interval, -0.063 to 0.053; P=0.87) and the risk of rapid eGFR decline was null (odds ratio, 0.93; 95% confidence interval, 0.79 to 1.08; P=0.33). Baseline 25-hydroxyvitamin D level was not associated with incidence of CKD or albuminuria. The association of 25-hydroxyvitamin D with eGFR decline is confounded by baseline eGFR. Sufficient 25-hydroxyvitamin D levels do not seem to protect from eGFR decline independently from baseline eGFR.
Resumo:
Los riñones son los responsables de funciones muy importantes dentro del organismo como la regulación del volumen -líquido- y del equilibrio acidobásico del plasma, la excreción de compuestos nitrogenados y la síntesis de eritropoyetina, hidroxicolecalciferol y renina. Las manifestaciones generales de la insuficiencia Renal aparecen en los sistemas cardiovascular, gastrointestinal, neuromuscular, esquelético, hematológico y dermatológico. Por este motivo, es muy importante conocer sus principales características para prevenir y tratar correctamente los problemas que puedan surgir durante el tratamiento dental. Este artículo describe la fisiopatología, complicaciones y manifestaciones bucales asociadas a esta condición así como las consideraciones y el tratamiento odontológico del paciente con una Insuficiencia Renal.