997 resultados para chaotic properties
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for Image -ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace Image -ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas Image -valine and Image -isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
The pulse-echo apparatus, designed and constructed by the author, has been used to reinvestigate the elastic properties of the eighteen optical glasses. The elastic constants are correct to 0·5%. The results are compared with the earlier investigation which utilised the optical method. The possible causes for large discrepancies observed are critically and briefly discussed. A qualitative interpretation of the results has been successfully attempted. The acoustic velocity increases with the decrease in lead and barium oxides and with increase in calcium oxide and boron trioxide components.
Resumo:
The nutritional profiles ofCorynebacterium laevaniformans and the other levan synthesizing coryneform organism isolated by Henis and Aschner (1954) have been studied.C. laevaniformans required biotin, thiamine and pantothenic acid for growth while the Henis and Aschner strain required the former two vitamins only. Two of the six strains ofC. laevaniformans had, in addition, a requirement for glutamate.C. laevaniformans has been shown to be able to degrade levan in growing cultures. Some properties of a cell-free levansucrase are described.
Resumo:
Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.
Resumo:
An enzyme system which catalysed the conversion of anthranilic acid to catechol has been purified 20-fold from a cell-free leaf extract of Tecoma stans. The optimum substrate concentration was 10−3 M and optimum temperature for the reaction was 45°. The presence of a multi-enzyme system was inferred from inhibition studies. The formation of catechol was inhibited by Mg2+, Zn2+, and Co2+ ions, whereas anthranilic acid disappearance was not affected to the same extent. The effect of metal chelating agents like EDTA, cyanide and pyrophosphate showed a similar trend. PCMB inhibited catechol formation but had no effect on anthranilic acid disappearance. The reaction was not inhibited by catalase, nor was it activated by peroxide-donating systems. This ruled out the possibility of peroxidative type of reaction. The overall reaction is markedly activated by NADPH and THFA. This multi-enzyme was separated into three different components, by fractionation with Alumina Cγ and calcium phosphate gels. The overall reaction catalysed by these components can be represented as anthranilic acid→3-hydroxy anthranilic acid→o-aminophenol→catechol.
A study of the purification and properties of tryptophan synthetase of Bengal gram (Cicer arietinum)
Resumo:
Active preparations of tryptophan synthetase were obtained from Bengal gram (Cicer arietinum) by the following procedure: (1) precipitation of inactive materials by manganous sulfate, (2) Adsorption of impurities on Alumina Cγ, (3) Adsorption of tryptophan synthetase on tricalcium phosphate gel, removal of inert protein from the gel by treatment with phosphate buffer (pH 7.2), and selective elution of the enzyme by 0.15 M phosphate buffer pH 7.2 containing 10% ammonium sulfate and 10−3 M serine. A 220-fold purification of the enzyme with 44% recovery of the activity was achieved. The pH optimum, effect of temperature, and substrate concentration and other properties of the purified enzyme have been studied in detail. Only the Image -isomer of serine takes part in the reaction. The Km values for indole, Image -serine, and Image -serine were calculated to be 0.66, 4.1, and 8.6 × 10−4 M, respectively. A kinetic study of the inhibition of tryptophan synthetase by indole-propionic acid has shown that it is of a competitive type. It has been demonstrated for the first time that 4-nitro-salicylaldehyde can replace pyridoxal phosphate as a coenzyme for the tryptophan synthetase reaction.
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for l-ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace l-ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas l-valine and l-isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.
Resumo:
Transparent glasses of various compositions in the system (100 -x)(Li2B4O7)-x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). X-ray powder diffraction studies confirmed the as-quenched glasses to be amorphous and the heat-treated to be nanocrystalline. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the size of the crystallites to be in the nano-range and confirmed the phase to be that of Ba5Li2Ti2Nb8O30 (BLTN) which was, initially, identified by X-ray powder diffraction. The frequency, temperature and compositional dependence of the dielectric constant and the electrical conductivity of the glasses and glass nanocrystal composites were investigated in the 100 Hz to 10 MHz frequency range. Electrical relaxations were analyzed using the electric modulus formalisms. The imaginary part of electric modulus spectra was modeled using an approximate solution of Kohlrausch-Williams-Watts relation. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
Transition-metal phosphites of cobalt and vanadium, [C4N2H12][Co(HPO3)(2)] (I), [C4N2H14][Co(HPO3)(2)] (II), [Co[C4H8N12)(H2PO3)(2)] (III),[C4N2H14][(VF)-F-III(HPO3)(2)]center dot H2O (IV), and[C3N2H5](2)[V-4(III)(H2O)(3)(HPO3)(4)(HPO4)(3)] (V), have been synthesized and characterized. Organophosphorus esters were employed to stabilize cobalt in tetrahedral coordination and also to prepare the low-dimensional structures, which are otherwise difficult to synthesize. The structures have one- (I, II, IV), two- (III) and three-dimensionally (V) extended networks built up by the linking of metal polyhedra and phosphite units. Another vanadyl phosphite, [C2N2H10][((VO)-O-IV)(3)(H2O) (HPO3)(4)]center dot H2O,([15]) was also prepared and investigated extensively by ESR, magnetic susceptibility, and other studies. All the compounds in the present study exhibit antiferromagnetic interactions. Well-established magnetic models have been used to fit the experimental data. The compounds havealso been characterized in detail by using UV/Vis spectroscopic studies.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.
Resumo:
We report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.