924 resultados para calcium sulphate
Resumo:
Background: Prosthetic rehabilitation of the posterior maxilla with dental implants is often difficult because of proximity to the maxillary sinus and insufficient bone height. Maxillary sinus floor augmentation procedures aim to obtain enough bone with an association between biomaterials and autogenous bone.Purpose: the purpose of this study was to evaluate histomorphometrically two grafting materials (calcium phosphate and Ricinus communis polymer) used in maxillary sinus floor augmentation associated with autogenous bone.Materials and Methods: Biopsies were taken from 10 consecutive subjects (mean age 45 years) 10 months after maxillary sinus floor augmentation. The sinus lift was performed with a mixture of autogenous bone and R. communis polymer or calcium phosphate in a 1:2 proportion. Routine histologic processing and staining with hernatoxylin and eosin were performed.Results: the histomorphometric analysis indicated satisfactory regenerative results in both groups for a mean of bone tissue in the grafted area (44.24 +/- 13.79% for the calcium phosphate group and 38.77 +/- 12.85% for the polymer group). Histologic evaluation revealed the presence of an inflammatory infiltrate of mononuclear prevalence that, on average, was nonsignificant. The histologic sections depicted mature bone with compact and cancellous areas in both groups.Conclusion: the results indicated that both graft materials associated with the autogenous bone were biocompatible, although both were still present after 10 months.
Resumo:
Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-alpha expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
Resumo:
Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4 weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4 weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4 weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim To evaluate the radiopacity of calcium hydroxide-based root canal sealers (Acroseal, Sealapex and Sealer 26), a glass-ionomer-based sealer (Activ GP Sealer) and a zinc oxide and eugenol-based sealer (Intrafill).Methodology Five disc-shaped specimens (10 x 1 mm) were fabricated from each material, according to the International Organization for Standardization (ISO) 6876/2001 standard. After setting of the materials, radiographs were taken using occlusal films and a graduated aluminum step-wedge varying from 2 to 16 mm in thickness. The dental X-ray unit (GE1000) was set at 50 Kvp, 10 mA, 18 pulses s(-1) and distance of 33.5 cm. The radiographs were digitized and the radiopacity compared with that of the aluminum step-wedge, using WIXWIN-2000 software (Gendex). Data (mm Al) were submitted to ANOVA and Tukey test.Results Intrafill was the most radiopaque material (7.67 mm Al) followed by Sealer 26 (6.33 mm Al), Sealapex (6.05 mm Al) and Acroseal (4.03 mm Al). Activ GP was the least radiopaque material (1.95 mm Al, P < 0.05).Conclusions The sealers evaluated in this study had different radiopacities. However, except for the glass-ionomer-based sealer, all materials had radiopacity values above the minimum recommended by the ISO standard.
Resumo:
Calcium channels mediate the actions of many drugs. The present work investigated whether diltiazem, an L-type calcium channel blocker, alters the inhibition of sodium appetite induced by noradrenaline and the alpha(2)-adrenoceptor agonist clonidine. Adult male Holtzman rats (N=4-8) with cannula implanted into the third cerebral ventricle were submitted to sodium depletion {furosemide sc+24-h removal of ambiente sodium). Sodium depleted control animals that received 0.9% NaCl as vehicle injected intracerebroventricularly (i.c.v) ingested 13.0+/-1.5 ml/120 min of 1.8% NaCl. Intracerebroventricular injection of either noradrenaline (80 nmol) or clonidine (20 nmol) inhibited 1.8% NaCl intake from 70 to 90%. Prior i.c.v. injection of diltiazem (6-48 nmol) inhibited from 50 to 100% the effect of noradrenaline and clonidine in a dose-response manner. Diltiazem alone at 100 nmol inhibited, but at 50 nmol had no effect on, sodium appetite. The results suggest: (1) common ionic mechanisms involving calcium channels for the inhibition that noradrenaline and clonidine exert on sodium appetite and (2) a dual role for the benzothiazepine site of L-type calcium channels in the control of sodium appetite. (C) 2002 Elsevier B.V. B V. All rights reserved.
Resumo:
Calcium ions are widely accepted as critically important in responses of neurons to a stimulus. We have show previously the central involvement of angiotensin II (ANGII) in water intake. This study determined whether voltage-dependent calcium channels are involved in ANGII-induced behavioral drinking implicating nitrergic mechanism. The antidipsogenic actions of L-type calcium channel antagonists nifedipine, on ANGII-induced drinking behavior were studied when it is injected into the median preoptic nucleus (MnPO). The influence of nitric oxide (NO) on nifedipine antidipsogenic action was also studied by utilizing the N-W-nitro-L-arginine methyl ester (L-NAME) a constitutive nitric oxide synthase inhibitor constitutive (cNOSI) and 7-nitroindazol (7-NIT) a specific neuronal nitric oxide synthase inhibitor (nNOSI) and L-arginine a NO donor. Rats 200-250 g, with cannulae implanted into MnPO, pre-treated into MnPO with either nifedipine, followed by ANGII, drank significantly less water than controls during the first 15 min after injection. However, L-NAME potentiated the dipsogenic effect of ANGII that is blocked by prior injection of nifedipine and L-arginine. 7-NIT injected prior to ANGII into MnPO also potentiated the dipsogenic effect of ANGII but with a less intensity than L-NAME that it is also blocked by prior injection of nifedipine. The results described in this paper provide evidence that calcium channels play important roles in the ANGII-induced behavioral water intake. The structures containing NO in the brain such as MnPO include both endothelial cells and neurons might be responsible for the influence of nifedipine on dipsogenic effect of ANGII. These data shows the correlation between L-type calcium channel and a free radical gas NO produced endogenously from amino acids L-arginine by endothelial and neuronal NO synthase in the control of ANGII-dipsogenic effect. This suggests that an L-type calcium channel participates in both short- and longer-term neuronal actions of ANGII by nitrergic way. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate the morphology and localisation of calcium hydroxide- and mineral trioxide aggregate (MTA)-induced hard tissue barriers after pulpotomy in dogs' teeth. Pulpotomies were performed on maxillary and mandibular premolars of five dogs. The teeth were assigned into three groups according to the pulp-capping agent used. The pulpal wounds were capped with calcium hydroxide (Ca(OH)(2) - control), MTA or ProRoot MTA, and the cavities were restored with amalgam. After a 90-day follow-up period, the dogs were euthanised and the teeth were examined under scanning electron microscopy (SEM). An image-processing and analysis software was used to delimit the perimeters of the root canal area and the hard tissue barrier to determine the percentage of root canal obliteration. SEM data were used to assess the morphology, localisation and extension of the reparative hard tissue barriers. ProRoot MTA was statistically different from MTA and Ca(OH)(2) (P < 0.05) regarding tissue barrier morphology. Localisation data showed that ProRoot MTA was significantly different from Ca(OH)(2) (P < 0.05) and similar to MTA (P > 0.01; P > 0.05). No statistically significant difference (P > 0.01; P > 0.05) was observed between MTA and Ca(OH)(2). A larger number of complete (centroperipheral) hard tissue barriers with predominance of dentinal tubules was observed to the ProRoot MTA when compared with the Ca(OH)(2) group.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the voltage dependent calcium channels and nitric oxide involvement in angiotensin II-induced pressor effect. The antipressor action of L-Type calcium channel antagonist, nifedipine, has been studied when it was injected into the third ventricle prior to angiotensin II. The influence of nitric oxide on nifedipine antipressor action has also been studied by utilizing N(W)-nitro-L-arginine methyl ester (LNAME) (40 mu g/0.2 mu l) a nitric oxide synthase inhibitor and L-arginine ( 20 mu g/0.2 mu l), a nitric oxide donor agent. Adult male Holtzman rats weighting 200-250 g, with cannulae implanted into the third ventricle were injected with angiotensin II. Angiotensin II produced an elevation in mean arterial pressure and a decreased in heart rate. Such effects were potentiated by the prior injection of LNAME. L-arginine and nifedipine blocked the effects of angiotensin II. These data showed the involvement of L-Type calcium channel and a free radical gas nitric oxide in the central control of angiotensin II-induced pressor effect. This suggested that L-Type calcium channel of the circunventricular structures of central nervous system participated in both short and long term neuronal actions of ANG II with the influence of nitrergic system.
Resumo:
The aim of this study was to evaluate the efficacy of three rotary instrument systems (K3, ProTaper and Twisted File) in removing calcium hydroxide residues from root canal walls. Thirty-four human mandibular incisors were instrumented with the ProTaper System up to the F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA, and filled with a calcium hydroxide intracanal dressing. After 7 days, the calcium hydroxide dressing was removed using the following rotary instruments: G1 - NiTi size 25, 0.06 taper, of the K3 System; G2 - NiTi F2, of the ProTaper System; or G3 - NiTi size 25, 0.06 taper, of the Twisted File System. The teeth were longitudinally grooved on the buccal and lingual root surfaces, split along their long axis, and their apical and cervical canal thirds were evaluated by SEM (×1000). The images were scored and the data were statistically analyzed using the Kruskall Wallis test. None of the instruments removed the calcium hydroxide dressing completely, either in the apical or cervical thirds, and no significant differences were observed among the rotary instruments tested (p > 0.05).
Resumo:
The release and diffusion of hydroxyl ions (OH-) of calcium hydroxide (Ca(OH)2)-based intracanal medications may be affected by the association with other substances. The aim of this study was to evaluate the diffusion of OH- ions through root dentin by the medications: G1, Ca(OH)2/saline; G2, Calen; G3, Calen/camphorated p-monochlorophenol (CMCP); and G4, Calen/0.4% chlorhexidine (CHX). Root canals from bovine teeth were prepared in a standardized manner. A cavity until dentin was prepared in the middle third of the root surface of each specimen. The external surface of the root was made impermeable using a layer of adhesive, except the prepared cavity. The root canals were filled with different medications, and teeth were individually stored in flasks containing 10 ml distilled water at 37 degrees C. The water pH was measured at 1, 3, 7, 14, 21, 30, and 60 days. Data obtained were subjected to anova and Tukeys tests. Increase in pH was observed at 3 days for Calen/CHX and from 7 to 14 days for the other mixtures. Calen paste promoted pH increase up to 21 days. Calen/CMCP had the highest pH up to 21 days, and all groups had similar results at 30 days. At 60 days, the greatest pH values were observed for Calen/CMCP and Calen alone. All different formulations of Ca(OH)2-based medications tested release hydroxyl ion that can diffuse through the dentin.
Resumo:
Objective: Hydroxyl (OH(-)) and calcium (Ca(++)) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) Epiphany, G4) Epiphany + 10% calcium hydroxide (CH), G5) Epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods: Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results: G1, G2, G4, and G5 had the highest pH until 14 days (p < 0.05). G1 presented the highest Ca(++) release until 6 h, and G4 and G5, from 12 h through 14 days. Ca(++) release was greater for G1 and G2 at 28 days. G6 released the least Ca(++). Conclusions: MTA, Sealer 26, Epiphany, and Epiphany + CH release OH-and Ca(++) ions. Epiphany + CH may be an alternative as retrofilling material.
Resumo:
Introduction: An experimental mineral trioxide aggregate sealer (MTAS) has been developed for use as a root canal sealer. The aim of this study was to evaluate the setting time, pH, and calcium ion release of MTAS compared with white Portland cement (CPB-40; Votorantin Cimentos, Camargo Correa SA, Pedro Leopoldo, MG, Brazil), white MTA Angelus (MTA; Angelus, Londrina, PR, Brazil), and AH Plus (Dentsply DeTrey, Konstanz, Germany). Methods: For the evaluation of setting time, each material was analyzed using Gilmore-type needles. Polyethylene tubes with the materials were immersed in distilled water for the measurement of pH (digital pH meter) and calcium release (atomic absorption spectrophotometry). The evaluations were performed at 3, 6, 12, 24, and 48 hours and 7, 14, and 28 days. Data were analyzed by analysis of variance and the Tukey test at 5% significance level. Results: MTAS showed higher calcium release at all experimental periods, a greater increase in pH up to 48 hours and the longest setting time. Conclusions: MTAS presented favorable properties for its indication as a root canal sealer. (J Endod 2011;37:844-846)
Evaluation of pH and Calcium Ion Release of Calcium Hydroxide Pastes Containing Different Substances
Resumo:
Introduction: The objective of this study was to evaluate the pH and calcium ion release of calcium hydroxide pastes associated with different substances. Methods: Forty acrylic teeth with simulated root canals were divided into 4 groups according to the substance associated to the calcium hydroxide paste: chlorhexidine (CHX) in 2 formulations (1% solution and 2% gel), Casearia sylvestris Sw extract, and propylene glycol (control). The teeth with pastes and sealed coronal accesses were immersed in 10 mL deionized water. After 10 minutes, 24 hours, 48 hours, and 7, 15, and 30 days, the teeth were removed to another container, and the liquid was analyzed. Calcium ion release was measured by atomic absorption spectrophotometry, and pH readings were made with a pH meter. Data were analyzed statistically by analysis of variance and Tukey test (alpha = 0.05). Results: Calcium analysis revealed significant differences (P < .05) for 1% CHX solution and 2% CHX gel at 10 minutes. After 24 hours, 2% CHX gel x Control and 2% CHX gel x 1% CHX solution differed significantly (P < .05). After 48 hours, there were significant differences (P < .05) for 2% CHX gel x Control and Extract x Control. No differences (P > .05) were observed among groups in the other periods. Regarding the pH, there were significant differences (P < .05) for 2% CHX gel x Control and 2% CHX gel x 1% CHX solution after 48 hours and for 2% CHX gel x Control after 15 days. In the other periods, no differences (P > .05) were observed among groups. Conclusions: All pastes behaved similarly in terms of pH and calcium ion release in the studied periods. (J Endod 2009;35:1274-1277)