960 resultados para brain function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Subcallosal cingulate gyrus (SCG) deep brain stimulation (DBS) is being investigated as a treatment for major depression. We report on the effects of ventromedial prefrontal cortex (vmPFC) DBS in rats, focusing on possible mechanisms involved in an antidepressant-like response in the forced swim test (FST). Methods: The outcome of vmPFC stimulation alone or combined with different types of lesions, including serotonin (5-HT) or nore-pineprhine (NE) depletion, was characterized in the FST. We also explored the effects of DBS on novelty-suppressed feeding, learned helplessness, and sucrose consumption in animals predisposed to helplessness. Results: Stimulation at parameters approximating those used in clinical practice induced a significant antidepressant-like response in the FST. Ventromedial PFC lesions or local muscimol injections did not lead to a similar outcome. However, animals treated with vmPFC ibotenic acid lesions still responded to DBS, suggesting that the modulation of fiber near the electrodes could play a role in the antidepressant-like effects of stimulation. Also important was the integrity of the serotonergic system, as the effects of DBS in the FST were completely abolished in animals bearing 5-HT, but not NE, depleting lesions. In addition, vmPFC stimulation induced a sustained increase in hippocampal 5-HT levels. Preliminary work with other models showed that DBS was also able to influence specific aspects of depressive-like states in rodents, including anxiety and anhedonia, but not helplessness. Conclusions: Our study suggests that vmPFC DES in rats maybe useful to investigate mechanisms involved in the antidepressant effects of SCG DBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen deficiency has been associated with stress, anxiety and depression. Estrogen receptors have been identified in the median raphe nucleus (MRN). This structure is the main source of serotonergic projections to the hippocampus, a forebrain area implicated in the regulation of defensive responses and in the resistance to chronic stress. There is reported evidence indicating that estrogen modulates 5-HT(1A) receptor function. In the MRN, somatodendritic 5-HT(1A) receptors control the activity of serotonergic neurones by negative feedback. The present study has evaluated the effect of intra-MRN injection of estradiol benzoate (EB, 600 or 1200 ng/0.2 mu l) on the performance of ovariectormized rats submitted to contextual conditioning. Additionally, the same treatment was given after intra-MRN injection of Way 100635 (100 ng/0.2 mu l). a 5-HT(1A) receptor antagonist. Both doses of EB decreased freezing and increased rearing, indicating an anxiolytic effect. Pretreatment with Way 100635 antagonized the anxiolytic effect of estradiol. On the basis of these results, it may be suggested that estrogens modulate anxiety by acting on 5-HT(1A) receptors localized in the MRN. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The divided visual field technique was used to investigate the pattern of brain asymmetry in the perception of positive/approach and negative/withdrawal facial expressions. A total of 80 undergraduate students (65 female, 15 male) were distributed in five experimental groups in order to investigate separately the perception of expressions of happiness, surprise, fear, sadness, and the neutral face. In each trial a target and a distractor expression were presented simultaneously in a computer screen for 150 ms and participants had to determine the side (left or right) on which the target expression was presented. Results indicated that expressions of happiness and fear were identified faster when presented in the left visual field, suggesting an advantage of the right hemisphere in the perception of these expressions. Fewer judgement errors and faster reaction times were also observed for the matching condition in which emotional faces were presented in the left visual field and neutral faces in the right visual field. Other results indicated that positive expressions (happiness and surprise) were perceived faster and more accurately than negative ones (sadness and fear). Main results tend to support the right hemisphere hypothesis, which predicts a better performance of the right hemisphere to perceive emotions, as opposed to the approach-withdrawal hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, being in a position to send auditory information to motor centers that participate in behaviors such as prey catching and predators` avoidance The role of the central nucleus of the IC (CIC) on fear and anxiety has been suggested on the basis that rats are able to engage in tasks to decrease the aversiveness of CIC stimulation, increased Fos immunolabeling during diverse aversive states and increased CIC auditory evoked potentials (AEP) induced by conditioned fear stimuli Additionally it was shown that brainstem AEP, represented by wave V, for which the main generator is the IC, is increased during experimentally induced anxiety Rats segregated according to their low or high emotional reactivity have been used as an important tool in the study of fear and anxiety The IC contains a high density of GABA receptors Since the efficacy of an anxiolytic compound is a function of the animal`s anxiety level, it is possible that GABA-benzodiazepine (Bzp) agents affect LA and HA animals differently In this study we investigated the GABA-Bzp influence on the modulation of AEP in rats with low (LA) or high-anxiety (HA) levels, as assessed by the elevated plus maze test (EPM) GABA-Bzp modulation on the unconditioned AEP response was analyzed by using intra CIC injections (0 2 mu l) of the GABA-Bzp agonists muscimol (121 ng) and diazepam (30 mu g) or the GABA inhibitors bicuculline (10 ng) and semicarbazide (7 mu g) In a second experiment, we evaluate the effects of contextual aversive conditioning on AEP using foot shocks as unconditioned stimuli On the unconditioned fear paradigm GABA inhibition in creased AEP in LA rats and decreases this measure in HA counterparts Muscimol was effective in reducing AEP in both LA and HA rats Contextual fear stimuli increased the magnitude of AEP In spite of no effect obtained with diazepam in LA rats the drug inhibited AEP in HA animals The specificity of the regulatory mechanisms mediated by GABA Bzp for the ascending neurocircuits responsible for the acquisition of aversive information in LA and HA animals shed light on the processing of sensory information underlying the generation of defensive reactions (C) 2010 IBRO Published by Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee (Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (> 10 min) to earlier in life (by 3-4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (< 10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mental rotation involves the creation and manipulation of internal images, with the later being particularly useful cognitive capacities when applied to high-level mathematical thinking and reasoning. Many neuroimaging studies have demonstrated mental rotation to be mediated primarily by the parietal lobes, particularly on the right side. Here, we use fMRI to show for the first time that when performing 3-dimensional mental rotations, mathematically gifted male adolescents engage a qualitatively different brain network than those of average math ability, one that involves bilateral activation of the parietal lobes and frontal cortex, along with heightened activation of the anterior cingulate. Reliance on the processing characteristics of this uniquely bilateral system and the interplay of these anterior/posterior regions may be contributors to their mathematical precocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diverse infectious and inflammatory environmental triggers, through unknown mechanisms, initiate autoimmune disease in genetically predisposed individuals. Here we show that IL-1b, a key cytokine mediator of the inflammatory response, suppresses CD25+CD4+ regulatory T cell function. Surprisingly, suppression by IL-1b occurs only where antigen is presented simultaneously to CD25+CD4+ T cells and to CD25CD4+ antigen-specific effector T cells. Further, NOD mice show an intrinsic over-production of IL-1 that contributes to reduced CD25+CD4+ regulatory T cell function. Thus, inflammation or constitutive over-expression of IL-1b in a genetically predisposed host can initiate a positive feedback loop licensing autoantigen-specific effector cells to inhibit the regulatory T cells maintaining tolerance to self.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G > A and c.707T > C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bariatric surgery in morbidly obese type 2 diabetic (T2DM) patients is associated with high rates of diabetes remission. We investigated the mechanisms of the anti-diabetic effect of the laparoscopic ileal interposition with sleeve gastrectomy (LII-SG) in normal weight (NW), overweight (OW) and obese (OB) T2DM patients. Ninety-four patients (aged 54 +/- 8 years) with long-standing (median 10 years), treated diabetes (median HbA(1c) = 8.6%), who were NW (15), OW (64) or OB (15) based on BMI, underwent LII-SG. Insulin sensitivity and parameters of -cell function were measured from an Oral Glycaemic Tolerance Test pre- and post-operatively. At a median of 13.4 months post-operatively, weight loss averaged 9.4 +/- 1.3, 16.8 +/- 0.8 and 23.2 +/- 1.7 kg in NW, OW and OB subjects, respectively (p < 0.0001). Insulin sensitivity was fully restored (395 [108] vs 208 [99] ml min(-1) m(-2)), fasting insulin secretion rate decreased (68 [52] vs 146 [120] pmol min(-1) m(-2)) and total insulin output increased (52 [26] vs 39 [28] nmol m(-2), all p a parts per thousand currency signaEuro parts per thousand 0.001). -cell glucose sensitivity doubled (37 [33] vs 18 [24] mol min(-1) m(-2) mM(-1), p < 0.0001). The only parameter predicting remission of diabetes was a lower baseline insulin sensitivity (p = 0.005). LII-SG induced changes on T2DM by mechanisms in part distinct from weight loss, principally involving restoration of insulin sensitivity and improvement of -cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate wavefront performance and modulation transfer function (MTF) in the human eye aft er the implantation of diffractive or refractive multifocal intraocular lenses (IOLs). Materials and Methods: This was a prospective, interventional, comparative, nonrandomized clinical study. Uncorrected distance and near visual acuity, and wavefront analysis including MTF curves (iTrace aberrometer, Tracey Technologies, Houston, TX, USA) were measured in 60 patients aft er bilateral IOL implantation with 6 months of follow-up. Forty eyes received the diffractive ReSTOR (Alcon), 40 eyes received the refractive ReZoom (Advanced Medical Optics) and 40 eyes, the Tecnis ZM900 (Advanced Medical Optics). The comparison of MTF and aberration between the intraocular lenses was performed using analysis of variance (ANOVA), followed by the Dunn test when necessary. Results: The mean uncorrected distance visual acuity was similar in all three groups of multifocal IOLs. The ReSTOR group provided better uncorrected near visual acuity than the ReZoom group (P < 0.001), but similar to the Tecnis group. Spherical aberration was significantly higher in the ReZoom group (P = 0.007). Similar MTF curves were found for the aspheric multifocal IOL Tecnis and the spheric multifocal IOL ReSTOR, and both performed better than the multifocal IOL ReZoom in a 5 mm pupil (P < 0.001 at all spatial frequencies). Conclusions: Diffractive IOLs studied presented similar MTF curves for a 5 mm pupil diameter. Both diffractive IOLs showed similar spherical aberration, which was significantly better with the full-diffractive IOL Tecnis than with the refractive IOL ReZoom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.