989 resultados para boundary layer
Resumo:
The flow in a square cavity is studied by solving the full Navier–Stokes and energy equations numerically, employing finite-difference techniques. Solutions are obtained over a wide range of Reynolds numbers from 0 to 50000. The solutions show that only at very high Reynolds numbers (Re [gt-or-equal, slanted] 30000) does the flow in the cavity completely correspond to that assumed by Batchelor's model for separated flows. The flow and thermal fields at such high Reynolds numbers clearly exhibit a boundary-layer character. For the first time, it is demonstrated that the downstream secondary eddy grows and decays in a manner similar to the upstream one. The upstream and downstream secondary eddies remain completely viscous throughout the range of Reynolds numbers of their existence. It is suggested that the behaviour of the secondary eddies may be characteristic of internal separated flows.
Resumo:
We have analysed the diurnal cycle of rainfall over the Indian region (10S-35N, 60E-100E) using both satellite and in-situ data, and found many interesting features associated with this fundamental, yet under-explored, mode of variability. Since there is a distinct and strong diurnal mode of variability associated with the Indian summer monsoon rainfall, we evaluate the ability of the Weather Research and Forecasting Model (WRF) to simulate the observed diurnal rainfall characteristics. The model (at 54km grid-spacing) is integrated for the month of July, 2006, since this period was particularly favourable for the study of diurnal cycle. We first evaluate the sensitivity of the model to the prescribed sea surface temperature (SST), by using two different SST datasets, namely, Final Analyses (FNL) and Real-time Global (RTG). It was found that with RTG SST the rainfall simulation over central India (CI) was significantly better than that with FNL. On the other hand, over the Bay of Bengal (BoB), rainfall simulated with FNL was marginally better than with RTG. However, the overall performance of RTG SST was found to be better than FNL, and hence it was used for further model simulations. Next, we investigated the role of the convective parameterization scheme on the simulation of diurnal cycle of rainfall. We found that the Kain-Fritsch (KF) scheme performs significantly better than Betts-Miller-Janjić (BMJ) and Grell-Devenyi schemes. We also studied the impact of other physical parameterizations, namely, microphysics, boundary layer, land surface, and the radiation parameterization, on the simulation of diurnal cycle of rainfall, and identified the “best” model configuration. We used this configuration of the “best” model to perform a sensitivity study on the role of various convective components used in the KF scheme. In particular, we studied the role of convective downdrafts, convective timescale, and feedback fraction, on the simulated diurnal cycle of rainfall. The “best” model simulations, in general, show a good agreement with observations. Specifically, (i) Over CI, the simulated diurnal rainfall peak is at 1430 IST, in comparison to the observed 1430-1730 IST peak; (ii) Over Western Ghats and Burmese mountains, the model simulates a diurnal rainfall peak at 1430 IST, as opposed to the observed peak of 1430-1730 IST; (iii) Over Sumatra, both model and observations show a diurnal peak at 1730 IST; (iv) The observed southward propagating diurnal rainfall bands over BoB are weakly simulated by WRF. Besides the diurnal cycle of rainfall, the mean spatial pattern of total rainfall and its partitioning between the convective and stratiform components, are also well simulated. The “best” model configuration was used to conduct two nested simulations with one-way, three-level nesting (54-18-6km) over CI and BoB. While, the 54km and 18km simulations were conducted for the whole of July, 2006, the 6km simulation was carried out for the period 18 - 24 July, 2006. The results of our coarse- and fine-scale numerical simulations of the diurnal cycle of monsoon rainfall will be discussed.
Resumo:
In this paper, the effects of T -stress on steady, dynamic crack growth in an elastic-plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J (2) flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T -stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T -stress for both ductile and cleavage mode of crack growth.
Resumo:
The unsteady rotating flow of a laminar incompressible viscous electrically conducting fluid over a rotating sphere in the vicinity of the equator has been studied. The fluid and the body rotate either in the same direction or in opposite directions. The effects of surface suction and magnetic field have been included in the analysis. There is an initial steady state that is perturbed by a sudden change in the rotational velocity of the sphere, and this causes unsteadiness in the flow field. The nonlinear coupled parabolic partial differential equations governing the boundary-layer flow have been solved numerically by using an implicit finite-difference scheme. For large suction or magnetic field, analytical solutions have also been obtained. The magnitude of the radial, meridional and rotational velocity components is found to be higher when the fluid and the body rotate in opposite directions than when they rotate in the same direction. The surface shear stresses in the meridional and rotational directions change sign when the ratio of the angular velocities of the sphere and the fluid lambda greater than or equal to lambda(0). The final (new) steady state is reached rather quickly which implies that the spin-up time is small. The magnetic field and surface suction reduce the meridional shear stress, but increase the surface shear stress in the rotational direction.
Resumo:
The work reported in this thesis is an attempt to enhance heat transfer in electronic devices with the use of impinging air jets on pin-finned heat sinks. The cooling per-formance of electronic devices has attracted increased attention owing to the demand of compact size, higher power densities and demands on system performance and re-liability. Although the technology of cooling has greatly advanced, the main cause of malfunction of the electronic devices remains overheating. The problem arises due to restriction of space and also due to high heat dissipation rates, which have increased from a fraction of a W/cm2to 100s of W /cm2. Although several researchers have at-tempted to address this at the design stage, unfortunately the speed of invention of cooling mechanism has not kept pace with the ever-increasing requirement of heat re- moval from electronic chips. As a result, efficient cooling of electronic chip remains a challenge in thermal engineering. Heat transfer can be enhanced by several ways like air cooling, liquid cooling, phase change cooling etc. However, in certain applications due to limitations on cost and weight, eg. air borne application, air cooling is imperative. The heat transfer can be increased by two ways. First, increasing the heat transfer coefficient (forced convec- tion), and second, increasing the surface area of heat transfer (finned heat sinks). From previous literature it was established that for a given volumetric air flow rate, jet im-pingement is the best option for enhancing heat transfer coefficient and for a given volume of heat sink material pin-finned heat sinks are the best option because of their high surface area to volume ratio. There are certain applications where very high jet velocities cannot be used because of limitations of noise and presence of delicate components. This process can further be improved by pulsating the jet. A steady jet often stabilizes the boundary layer on the surface to be cooled. Enhancement in the convective heat transfer can be achieved if the boundary layer is broken. Disruptions in the boundary layer can be caused by pulsating the impinging jet, i.e., making the jet unsteady. Besides, the pulsations lead to chaotic mixing, i.e., the fluid particles no more follow well defined streamlines but move unpredictably through the stagnation region. Thus the flow mimics turbulence at low Reynolds number. The pulsation should be done in such a way that the boundary layer can be disturbed periodically and yet adequate coolant is made available. So, that there is not much variation in temperature during one pulse cycle. From previous literature it was found that square waveform is most effective in enhancing heat transfer. In the present study the combined effect of pin-finned heat sink and impinging slot jet, both steady and unsteady, has been investigated for both laminar and turbulent flows. The effect of fin height and height of impingement has been studied. The jets have been pulsated in square waveform to study the effect of frequency and duty cycle. This thesis attempts to increase our understanding of the slot jet impingement on pin-finned heat sinks through numerical investigations. A systematic study is carried out using the finite-volume code FLUENT (Version 6.2) to solve the thermal and flow fields. The standard k-ε model for turbulence equations and two layer zonal model in wall function are used in the problem Pressure-velocity coupling is handled using the SIMPLE algorithm with a staggered grid. The parameters that affect the heat transfer coefficient are: height of the fins, total height of impingement, jet exit Reynolds number, frequency of the jet and duty cycle (percentage time the jet is flowing during one complete cycle of the pulse). From the studies carried out it was found that: a) beyond a certain height of the fin the rate of enhancement of heat transfer becomes very low with further increase in height, b) the heat transfer enhancement is much more sensitive to any changes at low Reynolds number than compared to high Reynolds number, c) for a given total height of impingement the use of fins and pulsated jet, increases the effective heat transfer coefficient by almost 200% for the same average Reynolds number, d) for all the cases it was observed that the optimum frequency of impingement is around 50 − 100 Hz and optimum duty cycle around 25-33.33%, e) in the case of turbulent jets the enhancement in heat transfer due to pulsations is very less compared to the enhancement in case of laminar jets.
Resumo:
Cavitation inception measurements are reported for flow past a downstream facing step with the height of the step varying from about 0.4 to 5 percent of the forebody diameter. The forebody was a 49 mm hemispherical nose and sigmai values were found to be very strong function of the height of the step. In addition, sigmai values were found to depend on whether the boundary layer approaching the step was laminar or turbulent. Generally sigmai values for turbulent case were lower.
Resumo:
The generalizations of the Onsager model for the radial boundary layer and the Carrier-Maslen model for the end-cap axial boundary layer in a high-speed rotating cylinder are formulated for studying the secondary gas flow due to wall heating and due to insertion of mass, momentum and energy into the cylinder. The generalizations have wider applicability than the original Onsager and Carrier-Maslen models, because they are not restricted to the limit A >> 1, though they are restricted to the limit R e >> 1 and a high-aspect-ratio cylinder whose length/diameter ratio is large. Here, the stratification parameter A = root m Omega(2)R(2)/2k(B)T). This parameter A is the ratio of the peripheral speed, Omega R, to the most probable molecular speed, root 2k(B)T/m, the Reynolds number Re = rho w Omega R(2)/mu, where m is the molecular mass, Omega and R are the rotational speed and radius of the cylinder, k(B) is the Boltzmann constant, T is the gas temperature, rho(w) is the gas density at wall, and mu is the gas viscosity. In the case of wall forcing, analytical solutions are obtained for the sixth-order generalized Onsager equations for the master potential, and for the fourth-order generalized Carrier-Maslen equation for the velocity potential. For the case of mass/momentum/energy insertion into the flow, the separation-of-variables procedure is used, and the appropriate homogeneous boundary conditions are specified so that the linear operators in the axial and radial directions are self-adjoint. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order and second-order in the radial and axial directions for the Onsager equation, and fourth-order and second-order in the axial and radial directions for the Carrier-Maslen equation) are determined. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used `diffuse reflection' boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a `temperature slip' (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity. The predictions of the generalized models are also significantly better than those of the original Onsager and Carrier-Maslen models, which are restricted to thin boundary layers in the limit of high stratification parameter.
Resumo:
Considering the linearized boundary layer equations for three-dimensional disturbances, a Mangler type transformation is used to reduce this case to an equivalent two-dimensional one.
Resumo:
The numerical solutions are obtained for skin friction, heat transfer to the wall and growth of boundary layer along the flat plate by employing two dimensional Navier-Stokes equations governing the hypersonic flow coupled with species continuity equations. Flow fields have been computed along the flat plate in CO2 atmosphere in the presence of transpiration cooling using air and carbon dioxide.
Resumo:
This study investigates the free convection and plumes dynamics over horizontal surfaces with parallel V-grooves. The convection is studied in a tank of water with the bottom surface being a smooth or grooved surface and the top of the water surface exposed to ambient. Two groove heights were used-10 mm and 3 mm-and the experiment was done with two values of aspect ratio-2.9 and 1.8 (aspect ratio is the width of the fluid layer/height of fluid layer). Heat flux at the bottom surface was from electrical heating. Beyond a certain critical temperature difference, enhanced heat transfer is obtained on the grooved surface compared to a smooth surface. Nusselt numbers are evaluated for both smooth and grooved surfaces and correlated using modified Rayleigh numbers. Visualization shows that the enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area; rather, it must be the local dynamics of the thermal boundary layer.
Resumo:
Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.
Resumo:
In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K-T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 101] direction. Solutions corresponding to different stress intensity rates K., T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with K. which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.
Resumo:
Study of laminar boundary layer in mixed convection from vertical plates is carried out. The surface temperature along the vertical plate is assumed to vary arbitrarily with vertical distance. Perturbation technique is used to solve the governing boundary layer equations. The differentials of the wall temperature are used as perturbation elements, which are functions of vertical distance, to obtain universal functions. The universal functions are valid for any type of vertical wall temperature variation. Heat transfer rates and fluid velocity inside the boundary layer can be expressed and calculated using these universal functions. Heat transfer rates are obtained for the special cases of power-law variation of the wall temperature. The effect of the governing parameter (Gr(y)/Re-y(2)) and the power index of the power-law wall temperature variation on heat transfer rates is studied. For the purpose of validation, the mixed convection results obtained by the present technique pertaining to the special cases of isothermal vertical wall are compared with those obtained by similarity analysis reported in literature, and the agreement is found to be good. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.
Resumo:
An energy-spectrum bottleneck, a bump in the turbulence spectrum between the inertial and dissipation ranges, is shown to occur in the nonturbulent, one-dimensional, hyperviscous Burgers equation and found to be the Fourier-space signature of oscillations in the real-space velocity, which are explained by boundary-layer-expansion techniques. Pseudospectral simulations are used to show that such oscillations occur in velocity correlation functions in one- and three-dimensional hyperviscous hydrodynamical equations that display genuine turbulence. DOI: 10.1103/PhysRevLett.110.064501