939 resultados para biomarker and pollen
Resumo:
The pollen, spore and organic walled dinoflagelletas cyst associations of two marine sediment cores from the Java Sea off the mouths of Jelai River (South Kalimantan) and Solo River (East Java) reflect environment and vegetation changes during the last ca 3500 years in the region. A decline in primary forest taxa (e.g. Agathis, Allophylus, Dacrycarpus, Dacrydium, Dipterocarpaceae, Phyllocladus, and Podocarpus) suggest that the major change in vegetation is caused by the forest canopy opening that can be related to human activity. The successively increase of pollen of pioneer canopy and herb taxa (e.g. Acalypha, Ficus, Macaranga/Mallotus, Trema, Pandanus) indicate the development of a secondary vegetation. In Java these changes started much earlier (ca at 2950 cal yr BP) then in Kalimantan (ca at 910 cal yr BP) and seem to be more severe. Changes in the marine realm, reflected by the dinoflagellate cyst association correspond to changes in vegetation on land. They reflect a gradual change from relatively well ventilated to more hypoxic bottom/pore water conditions in a more eutrophic environment. Near the coast of Java, the shift of the water trophic status took place between ca 820 and 500 cal yrs BP, while near the coast of Kalimantan it occurred as late as at the beginning of the 20th century. We observe an increasing amount of the cyst of Polykrikos schwarzii, cyst of P. kofoidii, Lingulodinium machaerophorum, Nematosphaeropsis labyrinthus and Selenopemphix nephroides at times of secondary vegetation development on land, suggesting that these species react strongly on human induced changes in the marine environment, probably related to increased pollution and eutrophication.
Resumo:
A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.
Resumo:
A palynological investigation of a Holocene profile from Lake Voulkaria, western Greece, was carried out as a contribution to the environmental history of the coastal area of northwestern Acarnania and the Classical city of Palairos. It shows that deciduous oaks dominated the natural vegetation of the area throughout the Holocene. Until ca. 7000 B.C. Pistacia occurred abundantly, while other evergreen woody taxa were rare. At ca. 6300 B.C. an expansion of Carpinus orientalis/Ostrya can be observed. Around ca. 5300 B.C. spreading of Erica indicates a change to a drier climate and/or first human impact. Since ca. 3500 B.C. an increase of evergreen shrubs now clearly indicates land-use. The foundation of the Classical city of Palairos led to a temporary expansion of Phillyrea maquis. Within this period, molluscs of brackish water indicate the use of the lake as a harbour after the construction of a connection to the sea. The deciduous Quercus woodland recovered when human impact decreased in the area, and lasted until modern times.
Resumo:
Gullfaks is one of the four major Norwegian oil and gas fields, located in the northeastern edge of the North Sea Plateau. Tommeliten lies in the greater Ekofisk area in the central North Sea. During the cruises HE 208 and AL 267 several seep locations of the North Sea were visited. At the Heincke seep at Gullfaks, sediments were sampled in May 2004 (HE 208) using a video-guided multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area densely covered with bacterial mats where gas ebullition was observed. The coarse sands limited MUC penetration depth to maximal 30 centimeters and the highly permeable sands did not allow for a high-resolution, vertical subsampling because of pore water loss. The gas flare mapping and videographic observation at Tommeliten indicated an area of gas emission with a few small patches of bacterial mats with diameters <50 cm from most of which a single stream of gas bubbles emerged. The patches were spaced apart by 10-100 m. Sampling of sediments covered by bacterial mats was only possible with 3 small push cores (3.8 cm diameter) mounted to ROV Cherokee. These cores were sampled in 3 cm intervals. Lipid biomarker extraction from 10 -17 g wet sediment was carried out as described in detail elsewhere (Elvert et al., 2003; doi:10.1080/01490450303894). Briefly, defined concentrations of cholestane, nonadecanol and nonadecanolic acid with known delta 13C-values were added to the sediments prior to extraction as internal standards for the hydrocarbon, alcohol and fatty acid fraction, respectively. Total lipid extracts were obtained from the sediment by ultrasonification with organic solvents of decreasing polarity. Esterified fatty acids (FAs) were cleaved from the glycerol head group by saponification with methanolic KOH solution. From this mixture, the neutral fraction was extracted with hexane. After subsequent acidification, FAs were extracted with hexane. For analysis, FAs were methylated using BF3 in methanol yielding fatty acid methyl esters (FAMES). The fixation for total cell counts and CARD-FISH were performed on-board directly after sampling. For both methods, sediments were fixed in formaldehyde solution. After two hours, aliquots for CARD-FISH staining were washed with 1* PBS (10mmol/l sodium phosphate solution, 130mmol/l NaCl, adjusted to a pH of 7.2) and finally stored in a 1:1 PBS:ethanol solution at -20°C until further processing. Samples for total cell counts were stored in formalin at 4°C until analysis. For sandy samples, the total cell count/CARD-FISH protocol was optimized to separate sand particles from the cells. Cells were dislodged from sediment grains and brought into solution with the supernatant by sonicating each sample onice for 2 minutes at 50W. This procedure was repeated four times and supernatants were combined. The sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 0.2µm GTTP filters (Millipore, Eschbonn, Germany).