854 resultados para based inspection and conditional monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In communities throughout the developing world, faith-based organizations (FBOs) focus on goals such as eradicating poverty, bolstering local economies, and fostering community development, while premising their activities and interaction with local communities on theological and religious understandings. Due to their pervasive interaction with participants, the religious ideologies of these FBOs impact the religious, economic, and social realities of communities. This study investigates the relationship between the international FBO, World Vision International (WVI), and changes to religious, economic, and social ideologies and practices in Andean indigenous communities in southern Peruvian. This study aims to contribute to the greater knowledge and understanding of (1) institutionalized development strategies, (2) faith-based development, and (3) how institutionalized development interacts with processes of socio-cultural change. Based on fifteen months of field research, this study involved qualitative and quantitative methods of participant-observation, interviews, surveys, and document analysis. Data were primarily collected from households from a sample of eight communities in the Pitumarca and Combapata districts, department of Canchis, province of Cusco, Peru where two WVI Area Development Programs were operating. Research findings reveal that there is a relationship between WVI’s intervention and some changes to religious, economic, and social structure (values, ideologies, and norms) and practices, demonstrating that structure and practices change when social systems are altered by new social actors. Findings also revealed that the impacts of WVI’s intervention greatly increased over the course of several years, demonstrating that changes in structure and practice occur gradually and need a period of time to take root. Finally, results showed that the impacts of WVI’s intervention were primarily limited to those most closely involved with the organization, revealing that the ability of one social actor to incite changes in the structure and practice of another actor is associated with the intensity of the relationship between the social actors. The findings of this study should be useful in ascertaining deductions and strengthening understandings of how faith-based development organizations impact aspects of religious, economic, and social life in the areas where they work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corporate executives closely monitor the accuracy of their hotels' occupancy fore- casts since important decisions are based upon these predictions. This study lists the criteria for selecting an appropriate error measure. It discusses several evaluation methods focusing on statistical significance tests and demonstrates the use of two adequate evaluation methods: Mincer- Zamowitz's efficiency test and Wilcoxon's Non-Parametric Matched-Pairs Signed- Ranks test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic is a human carcinogen that has been found in various waters and wines throughout the world. Therefore, close examination of these liquids is necessary to prevent the intoxication of animals and humans. Wines and waters often contain significant amounts of toxic arsenic species. The source of arsenic in wines and waters is generally believed to be the result of arsenic-based pesticides and herbicides. Recent studies have also shown that toxic arsenic may be used in the cultivation and acceleration of the ripening process of fruit, ultimately contaminating fruit-based beverages. The determination of total arsenic can be found by using several methods, including AFS or ICP/MS. No pretreatment of water is necessary, except for filtering by means of a Fisherbrand PTFE 0.45 connected to a Becton-Dickinson 10 mL syringe to filter particles from water. The pretreatment of the wine includes ethanol evaporation and an addition of 0.1% nitric acid. A number of commercial drinking waters and regional lake water were analyzed. Since we have confirmed the presence of arsenic in a variety of waters and wines from different countries, we decided to test a number of commercially available beverages for the presence of arsenic. The focus ofthis project is to establish the presence of arsenic in various commercially available beverages. ICP-MS was used to determine total arsenic using certified standards. Internal standards Indium and Yttrium were also used to verify the concentration readings, which varied from 0- 20 ppb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the implementation of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment in Glaisdale Beck; a small upland catchment in the UK. Hydro-meteorological and suspended sediment datasets are collected over a two year period spanning pre- and post-diversion periods in order to assess the impact of the channel reconfiguration scheme on the fluvial suspended sediment dynamics. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. This is characterised by reductions in flow-weighted mean suspended sediment concentrations from 77.93 mg/l prior to mitigation, to 74.36 mg/l following the diversion. A Mann-Whitney U test found statistically significant differences (p < 0.001) between the pre- and post-monitoring median SSCs. Whilst application of one-way analysis of covariance (ANCOVA) on the coefficients of sediment rating curves developed before and after the diversion found statistically significant differences (p < 0.001), with both Log a and b coefficients becoming smaller following the diversion. Non-parametric analysis indicates a reduction in residuals through time (p < 0.001), with the developed LOWESS model over-predicting sediment concentrations as the channel stabilises. However, the channel is continuing to adjust to the reconfigured morphology, with evidence of a headward propagating knickpoint which has migrated 120 m at an exponentially decreasing rate over the last 7 years since diversion. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in upland streams but the full value of this may take many years to achieve whilst the fluvial system, slowly readjusts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

lmage super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super­ resolution problems. lndeed, in arder to estimate an output image, we adopta mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already per- form well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in arder to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the- art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for recon- structing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This paper aims to explore the role of internal and external knowledgebased linkages across the supply chain in achieving better operational performance. It investigates how knowledge is accumulated, shared, and applied to create organization-specific knowledge resources that increase and sustain the organization's competitive advantage. Design/methodology/approach: This paper uses a single case study with multiple, embedded units of analysis, and the social network analysis (SNA) to demonstrate the impact of internal and external knowledge-based linkages across multiple tiers in the supply chain on the organizational operational performance. The focal company of the case study is an Italian manufacturer supplying rubber components to European automotive enterprises. Findings: With the aid of the SNA, the internal knowledge-based linkages can be mapped and visualized. We found that the most central nodes having the most connections with other nodes in the linkages are the most crucial members in terms of knowledge exploration and exploitation within the organization. We also revealed that the effective management of external knowledge-based linkages, such as buyer company, competitors, university, suppliers, and subcontractors, can help improve the operational performance. Research limitations/implications: First, our hypothesis was tested on a single case. The analysis of multiple case studies using SNA would provide a deeper understanding of the relationship between the knowledge-based linkages at all levels of the supply chain and the integration of knowledge. Second, the static nature of knowledge flows was studied in this research. Future research could also consider ongoing monitoring of dynamic linkages and the dynamic characteristic of knowledge flows. Originality/value: To the best of our knowledge, the phrase 'knowledge-based linkages' has not been used in the literature and there is lack of investigation on the relationship between the management of internal and external knowledge-based linkages and the operational performance. To bridge the knowledge gap, this paper will show the importance of understanding the composition and characteristics of knowledge-based linkages and their knowledge nodes. In addition, this paper will show that effective management of knowledge-based linkages leads to the creation of new knowledge and improves organizations' operational performance.