941 resultados para bar
Resumo:
Maps have been published on the world wide web since its inception (Cartwright, 1999) and are still accessed and viewed by millions of users today (Peterson, 2003). While early webbased GIS products lacked a complete set of cartographic capabilities, the functionality within such systems has significantly increased over recent years. Functionalities once found only in desktop GIS products are now available in web-based GIS applications, for example, data entry, basic editing, and analysis. Applications based on web-GIS are becoming more widespread and the web-based GIS environment is replacing the traditional desktop GIS platforms in many organizations. Therefore, development of a new cartographic method for web-based GIS is vital. The broad aim of this project is to examine and discuss the challenges and opportunities of innovative cartography methods for web-based GIS platforms. The work introduces a recently developed cartographic methodology, which is based on a web-based GIS portal by the Survey of Israel (SOI). The work discusses the prospects and constraints of such methods in improving web-GIS interfaces and usability for the end user. The work also tables the preliminary findings of the initial implementation of the web-based GIS cartographic method within the portal of the Survey of Israel, as well as the applicability of those methods elsewhere.
Resumo:
The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature (Frost, Dowling, Bar-Or, & Dyson, 1997; Jeng, Liao, Lai, & Hou, 1997; Wergel-Kolmert & Wohlfart, 1999; Maltais, Bar-Or, Pienynowski, & Galea, 2003; Browning & Kram, 2005; Browning, Baker, Herron, & Kram, 2006; Hills, Byrne, Wearing, & Armstrong, 2006) and is identified as the most efficient walking speed, with increased efficiency defined by lower oxygen uptake (VO^sub 2^) per unit mechanical work (Hoyt & Taylor, 1981; Taylor, Heglund, & Maloiy, 1982; Hreljac, 1993). [...] assessing individual and group differences in metabolic energy expenditure using oxygen uptake requires individuals to be comfortable with, and able to accommodate to, the equipment.
Resumo:
Two different methods to measure binocular longitudinal corneal apex movements were synchronously applied. High-speed videokeratoscopy at a sampling frequency of 15 Hz and a customdesigned ultrasound distance sensor at 100 Hz were used for the left and the right eye, respectively. Four healthy subjects participated in the study. Simultaneously, cardiac electric cycle (ECG) was registered for each subject at 100 Hz. Each measurement took 20 s. Subjects were asked to suppress blinking during the measurements. A rigid headrest and a bite-bar were used to minimize undesirable head movements. Time, frequency and time-frequency representations of the acquired signals were obtained to establish their temporal and spectral contents. Coherence analysis was used to estimate the correlation between the measured signals. The results showed close correlation between both corneal apex movements and the cardiopulmonary system. Unraveling these relationships could lead to better understanding of interactions between ocular biomechanics and vision. The advantages and disadvantages of the two methods in the context of measuring longitudinal movements of the corneal apex are outlined.
Resumo:
We aimed to investigate the naturally occurring horizontal plane movements of a head stabilized in a standard ophthalmic headrest and to analyze their magnitude, velocity, spectral characteristics, and correlation to the cardio pulmonary system. Two custom-made air-coupled highly accurate (±2 μm)ultrasound transducers were used to measure the displacements of the head in different horizontal directions with a sampling frequency of 100 Hz. Synchronously to the head movements, an electrocardiogram (ECG) signal was recorded. Three healthy subjects participated in the study. Frequency analysis of the recorded head movements and their velocities was carried out, and functions of coherence between the two displacements and the ECG signal were calculated. Frequency of respiration and the heartbeat were clearly visible in all recorded head movements. The amplitude of head displacements was typically in the range of ±100 μm. The first harmonic of the heartbeat (in the range of 2–3 Hz), rather than its principal frequency, was found to be the dominant frequency of both head movements and their velocities. Coherence analysis showed high interdependence between the considered signals for frequencies of up to 20 Hz. These findings may contribute to the design of better ophthalmic headrests and should help other studies in the decision making of whether to use a heavy headrest or a bite bar.
Resumo:
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.
Resumo:
In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.
Resumo:
Sodium niobates doped with different amount of tantalum (TaV) were prepared via thermal reaction process. It was found pure nanofibril and bar-like solids can be obtained when tantalum was introduced into the reaction system. For the well-crystallized fibril solids, the Na+ ions are difficult to be exchanged, and the radioactive ions such as Sr2+ and Ra2+ ions just deposit on the surface of the fibers during the sorption process, resulting in lower sorption capacity and distribution coefficients (Kd)`. However, the bar-like solids are poorly-crystallized and have lots of exchangeable Na+ ions. They are able to remove highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ ions. Even in the presence of lots of Na+ ions, they also have higher Kd. More importantly, such sorption finally intelligently triggers considerable collapse of the structure, resulting in the entrapment of the toxic bivalent cations permanently in the solids so that they can be safely disposed. This study highlights new opportunities for the preparation of Nb-based adsorbents to efficiently remove the toxic radioactive ions from contaminated water.
Resumo:
This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.
Resumo:
This paper presents a method for calculating the in-bucket payload volume on a dragline for the purpose of estimating the material’s bulk density in real-time. Knowledge of the bulk density can provide instant feedback to mine planning and scheduling to improve blasting and in turn provide a more uniform bulk density across the excavation site. Furthermore costs and emissions in dragline operation, maintenance and downstream material processing can be reduced. The main challenge is to determine an accurate position and orientation of the bucket with the constraint of real-time performance. The proposed solution uses a range bearing and tilt sensor to locate and scan the bucket between the lift and dump stages of the dragline cycle. Various scanning strategies are investigated for their benefits in this real-time application. The bucket is segmented from the scene using cluster analysis while the pose of the bucket is calculated using the iterative closest point (ICP) algorithm. Payload points are segmented from the bucket by a fixed distance neighbour clustering method to preserve boundary points and exclude low density clusters introduced by overhead chains and the spreader bar. A height grid is then used to represent the payload from which the volume can be calculated by summing over the grid cells. We show volume calculated on a scaled system with an accuracy of greater than 95 per cent.
Resumo:
The enforcement of Intellectual Property rights poses one of the greatest current threats to the privacy of individuals online. Recent trends have shown that the balance between privacy and intellectual property enforcement has been shifted in favour of intellectual property owners. This article discusses the ways in which the scope of preliminary discovery and Anton Piller orders have been overly expanded in actions where large amounts of electronic information is available, especially against online intermediaries (service providers and content hosts). The victim in these cases is usually the end user whose privacy has been infringed without a right of reply and sometimes without notice. This article proposes some ways in which the delicate balance can be restored, and considers some safeguards for user privacy. These safeguards include restructuring the threshold tests for discovery, limiting the scope of information disclosed, distinguishing identity discovery from information discovery, and distinguishing information preservation from preliminary discovery.
Resumo:
In the field of leadership studies transformational leadership theory (e.g., Bass, 1985; Avolio, Bass, & Jung, 1995) has received much attention from researchers in recent years (Hughes, Ginnet, & Curphy, 2009; Hunt, 1999). Many previous studies have found that transformational leadership is related to positive outcomes such as the satisfaction, motivation and performance of followers in organisations (Judge & Piccolo, 2004; Lowe, Kroeck, & Sivasubramaniam, 1996), including in educational institutions (Chin, 2007; Leithwoood & Jantzi, 2005). Hence, it is important to explore constructs that may predict leadership style in order to identify potential transformational leaders in leadership assessment and selection procedures. Several researchers have proposed that emotional intelligence (EI) is one construct that may account for hitherto unexplained variance in transformational leadership (Mayer, 2001; Watkin, 2000). Different models of EI exist (e.g., Goleman, 1995, 2001; Bar-On, 1997; Mayer & Salovey, 1997) but momentum is growing for the Mayer and Salovey (1997) model to be considered the most useful (Ashkanasy & Daus, 2005; Daus & Ashkanasy, 2005). Studies in non-educational settings claim to have found that EI is a useful predictor of leadership style and leader effectiveness (Harms & Crede, 2010; Mills, 2009) but there is a paucity of studies which have examined the Mayer and Salovey (1997) model of EI in educational settings. Furthermore, other predictor variables have rarely been controlled in previous studies and only self-ratings of leadership behaviours, rather than multiple ratings, have usually been obtained. Therefore, more research is required in educational settings to answer the question: to what extent is the Mayer and Salovey (1997) model of EI a useful predictor of leadership style and leadership outcomes? This project, set in Australian educational institutions, was designed to move research in the field forward by: using valid and reliable instruments, controlling for other predictors, obtaining an adequately sized sample of real leaders as participants and obtaining multiple ratings of leadership behaviours. Other variables commonly used to predict leadership behaviours (personality factors and general mental ability) were assessed and controlled in the project. Additionally, integrity was included as another potential predictor of leadership behaviours as it has previously been found to be related to transformational leadership (Parry & Proctor-Thomson, 2002). Multiple ratings of leadership behaviours were obtained from each leader and their supervisors, peers and followers. The following valid and reliable psychological tests were used to operationalise the variables of interest: leadership styles and perceived leadership outcomes (Multifactor Leadership Questionnaire, Avolio et al., 1995), EI (Mayer–Salovey–Caruso Emotional Intelligence Test, Mayer, Salovey, & Caruso, 2002), personality factors (The Big Five Inventory, John, Donahue, & Kentle, 1991), general mental ability (Wonderlic Personnel Test-Quicktest, Wonderlic, 2003) and integrity (Integrity Express, Vangent, 2002). A Pilot Study (N = 25 leaders and 75 raters) made a preliminary examination of the relationship between the variables included in the project. Total EI, the experiential area, and the managing emotions and perceiving emotions branches of EI, were found to be related to transformational leadership which indicated that further research was warranted. In the Main Study, 144 leaders and 432 raters were recruited as participants to assess the discriminant validity of the instruments and examine the usefulness of EI as a predictor of leadership style and perceived leadership outcomes. Scores for each leadership scale across the four rating levels (leaders, supervisors, peers and followers) were aggregated with the exception of the management-by-exception active scale of transactional leadership which had an inadequate level of interrater agreement. In the descriptive and measurement component of the Main Study, the instruments were found to demonstrate adequate discriminant validity. The impact of role and gender on leadership style and EI were also examined, and females were found to be more transformational as leaders than males. Females also engaged in more contingent reward (transactional leadership) behaviours than males, whilst males engaged in more passive/avoidant leadership behaviours than females. In the inferential component of the Main Study, multiple regression procedures were used to examine the usefulness of EI as a predictor of leadership style and perceived leadership outcomes. None of the EI branches were found to be related to transformational leadership or the perceived leadership outcomes variables included in the study. Openness, emotional stability (the inverse of neuroticism) and general mental ability (inversely) each predicted a small amount of variance in transformational leadership. Passive/avoidant leadership was inversely predicted by the understanding emotions branch of EI. Overall, EI was not found to be a useful predictor of leadership style and leadership outcomes in the Main Study of this project. Implications for researchers and human resource practitioners are discussed.