998 resultados para bacterial sensitivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential parameters sensitivity analysis for helium unlike molecules, HeNe, HeAr, HeKr and HeXe is the subject of this work. Number of bound states these rare gas dimers can support, for different angular momentum, will be presented and discussed. The variable phase method, together with the Levinson's theorem, is used to explore the quantum scattering process at very low collision energy using the Tang and Toennies potential. These diatomic dimers can support a bound state even for relative angular momentum equal to five, as in HeXe. Vibrational excited states, with zero angular momentum, are also possible for HeKr and HeXe. Results from sensitive analysis will give acceptable order of magnitude on potentials parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data presented describe the development of an enzymatic process in vegetable oils. Six bacterial lipases were tested for their ability to hydrolyze. For each lipase assay, the p-NPP method was applied to obtain maximum enzymatic activities. The lipase from Burkholderia cepacia (lipase B-10) was the most effective in buriti oil, releasing 4840 µmol p-NP mL-1. The lipase from Klebsiella variicola (lipase B-22) was superior in passion fruit oil, releasing 4140 µmol p-NP mL-1 and also in babassu palm oil, releasing 2934 µmol p-NP mL-1. Research into the bioprocessing of oils aims to provide added value for this regional raw material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polysialic acid is a carbohydrate polymer which consist of N-acetylneuraminic acid units joined by alpha2,8-linkages. It is developmentally regulated and has an important role during normal neuronal development. In adults, it participates in complex neurological processes, such as memory, neural plasticity, tumor cell growth and metastasis. Polysialic acid also constitutes the capsule of some meningitis and sepsis-causing bacteria, such as Escherichia coli K1, group B meningococci, Mannheimia haemolytica A2 and Moraxella nonliquefaciens. Polysialic acid is poorly immunogenic; therefore high affinity antibodies against it are difficult to prepare, thus specific and fast detection methods are needed. Endosialidase is an enzyme derived from the E. coli K1 bacteriophage, which specifically recognizes and degrades polysialic acid. In this study, a novel detection method for polysialic acid was developed based on a fusion protein of inactive endosialidase and the green fluorescent protein. It utilizes the ability of the mutant, inactive endosialidase to bind but not cleave polysialic acid. Sequencing of the endosialidase gene revealed that amino acid substitutions near the active site of the enzyme differentiate the active and inactive forms of the enzyme. The fusion protein was applied for the detection of polysialic acid in bacteria and neuroblastoma. The results indicate that the fusion protein is a fast, sensitive and specific reagent for the detection of polysialic acid. The use of an inactive enzyme as a specific molecular tool for the detection of its substrate represents an approach which could potentially find wide applicability in the specific detection of diverse macromolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coat protein gene of Apple stem grooving virus (ASGV) was amplified by RT-PCR, cloned, sequenced and subcloned in the expression vector pMal-c2. This plasmid was used to transform Escherichia coli BL21c+ competent cells. The ASGV coat protein (cp) was expressed as a fusion protein containing a fragment of E. coli maltose binding protein (MBP). Bacterial cells were disrupted by sonication and the ASGVcp/MBP fusion protein was purified by amylose resin affinity chromatography. Polyclonal antibodies from rabbits immunized with the fusion protein gave specific reactions to ASGV from infected apple (Malus domestica) cv. Fuji Irradiada and Chenopodium quinoa at dilutions of up to 1:1,000 and 1:2,000, respectively, in plate trapped ELISA. The ASGVcp/MBP fusion protein reacted to a commercial antiserum against ASGV in immunoblotting assay. The IgG against ASGVcp/MBP performed favorably in specificity and sensitivity to the virus. This method represents an additional tool for the efficient ASGV-indexing of apple propagative and mother stock materials, and for use in support of biological and molecular techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of organic matter that improves the physical, chemical and biological soil properties has been studied as an inducer of suppressiveness to soilborne plant pathogens. The objective of this work was to evaluate the effect of different sources and concentrations of organic matter on tomato bacterial wilt control. Two commercially available organic composts and freshly cut aerial parts of pigeon pea (Cajanus cajan) and crotalaria (Crotalaria juncea) were incorporated, in concentrations of 10, 20 and 30 % (v/v), into soil infested with Ralstonia solanacearum. The soil with the fresh organic matter of pigeon pea and crotalaria was incubated for 30 and 60 days before planting. Tomato seedlings of cv. Santa Clara were transplanted into polyethylene bags with 3 kg of the planting substrate (infested soil + organic matter). The wilting symptoms and percentage of flowering plants were evaluated for 45 days. All evaluated concentrations with incorporation and incubation for 30 days of aerial parts of pigeon pea and crotalaria controlled 100% tomato bacterial wilt. With 60 days of incubation, only the 10 % concentration of pigeon pea and crotalaria did not control the disease. These results suggest that soil incorporation of fresh aerial parts of pigeon pea and crotalaria is an effective method for bacterial wilt control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop a molecular method for detection and identification of Xanthomonas campestris pv. viticola (Xcv) the causal agent of grapevine bacterial canker, primers were designed based on the partial sequence of the hrpB gene. Primer pairs Xcv1F/Xcv3R and RST2/Xcv3R, which amplified 243- and 340-bp fragments, respectively, were tested for specificity and sensitivity in detecting DNA from Xcv. Amplification was positive with DNA from 44 Xcv strains and with DNA from four strains of X. campestris pv. mangiferaeindicae and five strains of X. axonopodis pv. passiflorae, with both primer pairs. However, the enzymatic digestion of PCR products could differentiate Xcv strains from the others. None of the primer pairs amplified DNA from grapevine, from 20 strains of nonpathogenic bacteria from grape leaves and 10 strains from six representative genera of plant pathogenic bacteria. Sensitivity of primers Xcv1F/Xcv3R and RST2/Xcv3R was 10 pg and 1 pg of purified Xcv DNA, respectively. Detection limit of primers RST2/Xcv3R was 10(4) CFU/ml, but this limit could be lowered to 10² CFU/ml with a second round of amplification using the internal primer Xcv1F. Presence of Xcv in tissues of grapevine petioles previously inoculated with Xcv could not be detected by PCR using macerated extract added directly in the reaction. However, amplification was positive with the introduction of an agar plating step prior to PCR. Xcv could be detected in 1 µl of the plate wash and from a cell suspension obtained from a single colony. Bacterium identity was confirmed by RFLP analysis of the RST2/Xcv3R amplification products digested with Hae III.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were carried out to determine in vivo the IC50 and the IC90 for demethylation-inhibitor fungicides (DMIs, triazoles) and quinone outside inhibitors (QoIs, strobilurins) to the five most frequent races of Puccinia triticina in 2007 growing season in Southern Brazil. The tests were done in a greenhouse with wheat seedlings. DMI fungicides were tested at the concentrations, in mg/L, 0.0; 0.02; 0.2; 2.0; 20.0; 100.0 and 200.0, and QoIs at the concentrations 0.0; 0.0001; 0.001; 0.01; 0.1; 1 and 10.0 mg of active ingredient/L water. Fungicides were preventively applied at 24 hours before the inoculation of seedlings with the fungal spores. The effect of treatments was assessed based on the number of uredia/cm². The lowest IC50 (inhibitory concentration) for DMI fungicides determined for MCG-MN, sensitive race, ranged from 0.33 to 0.91 mg/L, while the highest values for MDP-MR, MDT-MR, MDK-MR, MFH-HT races, varied from 9.63 to 85.64 mg/L (suspected insensitivity). QoI fungicide presented an IC50 varying from 0.0018 to 0.14 mg/L. The sensitivity reduction factor for DMIs varied from 8.8 to 238.8, and for QoIs from 0.3 to 1.5 mg/L. Sensitivity reduction was confirmed for the races MDP-MR, MDT-MR, MDK-MR, MFH-HT to DMIs, as well as their sensitivity to QoI fungicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were carried out in a growth chamber with controlled temperature and photoperiod to test two populations of Blumeria graminis f. sp. hordei from Guarapuava, Paraná State, and Passo Fundo, Rio Grande do Sul State, Brazil. Treatments consisted in application of the fungicide triadimenol (Baytan 150 SC®) at three rates of its commercial formulation: 150, 250, 350 mL/100 Kg barley seeds. The experiments were conducted separately in a growth chamber for each population, adopting the same temperature and photoperiod. For inoculation, pots containing barley seedlings colonized by the fungus were placed among the plots. After emergence of the first symptoms, the disease severity was assessed at two-day intervals. The experiments were repeated twice for each fungus population. Data were expressed as area under the disease progress curve and as powdery mildew control by comparing the severity after the fungicide treatments to that of control. Data were subjected to analysis of variance and regression analysis; the area under the disease progress curve was also calculated. Comparing the data obtained in the present study with those reported in the literature and the control, the maximum value of 26.1% is considered insufficient to prevent the damages caused by the disease. The control response to the fungicide rate was significant. We can conclude that there was a reduction in the sensitivity of both B. graminis f.sp. hordei populations to the fungicide triadimenol, which explains the control failure observed in barley farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head blight of wheat is a disease of global importance. In Brazil, it can cause damage of up to 27%. As resistant cultivars are not available yet, short-term disease control relies on the use of fungicides. The first step to reach effective management is to identify potent fungicides. In vitro experiments were conducted to determine the inhibitory concentration 50% (IC50) for mycelial growth or conidial germination, according to the chemical group of fungicides, of five Fusarium graminearum isolates of different origins. The following demethylation inhibitor (DMI) fungicides were tested: epoxiconazole, cyproconazole, metconazole, prochloraz, protioconazole and tebuconazole. In addition, azoxystrobin, kresoxim-methyl, pyraclostrobin and trifloxystrobin were included in the study, representing Quinone outside inhibitor fungicides (QoI), as well as a tubulin synthesis inhibitor, carbendazim and two ready mixtures, trifloxystrobin + tebuconazole or trifloxistrobin + prothioconazole. DMI's showed lower IC50 values compared to the QoI's. For the five tested isolates, in the overall mean, IC50 considering mycelial growth ranged for DMI's from 0.01 mg/L (metconazole, prochloraz and prothioconazole) to 0.12 mg/L (cyproconazole) and considering conidial germination for QoI's from 0.21 mg/L (azoxystrobin) to 1.33 mg/L (trifloxystrobin). The IC50 for carbendazim was 0.07 mg/L. All tested isolates can be considered sensitive to the studied DMI's, although certain differences in sensitivity could be detected between the isolates originating from one same state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean target leaf spot, caused by the fungus Corynespora cassiicola, is controlled especially by leaf application of fungicides. In the last seasons, in the central-west region of Brazil, the disease chemical control efficiency has been low. This led to the hypothesis that the control failure could be due to the reduction or loss of the fungus sensitivity to fungicides. To clarify this fact, in vitro experiments were conducted to determine mycelial sensitivity of five C. cassiicola isolates to fungicides. Mycelial growth was assessed based on the growth of the mycelium on the culture medium, in Petri dishes. The medium potato-dextrose-agar was supplemented with the concentrations 0; 0.01; 0.1; 1; 10; 20 and 40 mg/L of the active ingredients carbendazim, cyproconazole, epoxiconazole, flutriafol and tebuconazole. The experiment was conducted and repeated twice in a controlled environment, temperature of 25±2ºC and photoperiod of 12 hours. Data on the percentage of mycelial inhibition were subjected to logarithmic regression analysis and the concentration that inhibits 50% of the mycelial growth (IC50) was calculated. Loss of sensitivity to carbendazim was observed for three fungal isolates, IC50 > 40 mg/L. Considering all five isolates, the IC50 for tebuconazole ranged from 1.89 to 2.80 mg/L, for epoxiconazol from 2.25 to 2.91, for cyproconazole from 9.21 to 20.32 mg/L, and for flutriafol from 0.77 to 2.18 mg/L. In the absence of information on the reference IC50 determined for wild isolates, the lowest values generated in our study can be used as standard to monitor the fungus sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, Fusarium head blight (FHB) affecting wheat can cause up to 39.8% damage. Resistant cultivars are not available yet; thus, short-term disease control relies on the use of fungicides. The first step to improve control is to monitor fungal populations that are sensitivity to chemicals in order to achieve efficient FHB management. In vitro experiments were conducted to evaluate the inhibitory concentration (IC50) of fungicides for both mycelial growth and conidial germination of ten Fusarium graminearum isolates. The following demethylation inhibitor (DMI) fungicides were tested: metconazole, prothioconazole and tebuconazole. In addition, pyraclostrobin and trifloxystrobin were included, representing QoI fungicides, as well as three co-formulations containing metconazole + pyraclostrobin, prothioconazole + trifloxystrobin, and tebuconazole + trifloxystrobin. For mycelial growth, the overall mean IC50 of isolates was: metconazole 0.07, prothioconazole 0.1, and tebuconazole 0.19 mg/L. For the co-formulations, it was: prothioconazole + trifloxystrobin 0.08, tebuconazole + trifloxystrobin 0.12, and metconazole + pyraclostrobin 0.14 mg/L. Regarding spore germination inhibition, IC50 for prothioconazole + trifloxystrobin was 0.06, for tebuconazole + trifloxystrobin, 0.12 mg/L, for QoI alone pyraclostrobin, was 0.09, and for trifloxystrobin, 0.28 mg/L. There was a sensitivity shift among isolates and the highest fungitoxicity to F. graminearum was confirmed for prothioconazole, metconazole and tebuconazole .