994 resultados para atomic and molecular physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an Unruh temperature given by k(B)T=h kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum optics experiments on bright beams are based on the spectral analysis of field fluctuations and typically probe correlations between radio-frequency sideband modes. However, the extra degree of freedom represented by this dual-mode picture is generally ignored. We demonstrate the experimental operation of a device which can be used to separate the quantum sidebands of an optical field. We use this device to explicitly demonstrate the quantum entanglement between the sidebands of a squeezed beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we explore the possibility of fundamental tests for coherent-state optical quantum computing gates [ T. C. Ralph et al. Phys. Rev. A 68 042319 (2003)] using sophisticated but not unrealistic quantum states. The major resource required in these gates is a state diagonal to the basis states. We use the recent observation that a squeezed single-photon state [S(r)∣1⟩] approximates well an odd superposition of coherent states (∣α⟩−∣−α⟩) to address the diagonal resource problem. The approximation only holds for relatively small α, and hence these gates cannot be used in a scalable scheme. We explore the effects on fidelities and probabilities in teleportation and a rotated Hadamard gate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a quantum error correction scheme that protects against accidental measurement, using a parity encoding where the logical state of a single qubit is encoded into two physical qubits using a nondeterministic photonic controlled-NOT gate. For the single qubit input states vertical bar 0 >, vertical bar 1 >, vertical bar 0 > +/- vertical bar 1 >, and vertical bar 0 > +/- i vertical bar 1 > our encoder produces the appropriate two-qubit encoded state with an average fidelity of 0.88 +/- 0.03 and the single qubit decoded states have an average fidelity of 0.93 +/- 0.05 with the original state. We are able to decode the two-qubit state (up to a bit flip) by performing a measurement on one of the qubits in the logical basis; we find that the 64 one-qubit decoded states arising from 16 real and imaginary single-qubit superposition inputs have an average fidelity of 0.96 +/- 0.03.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate the superior discrimination of separated, unentangled two-qubit correlated states using nonlocal measurements, when compared with measurements based on local operations and classical communications. When predicted theoretically, this phenomenon was dubbed quantum nonlocality without entanglement. We characterize the performance of the nonlocal, or joint, measurement with a payoff function, for which we measure 0.72 +/- 0.02, compared with the maximum locally achievable value of 2/3 and the overall optimal value of 0.75.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For two two-level atoms coupled to a single Bosonic mode that is driven and heavily damped, the steady state can be entangled by resonantly driving the system [S. Schneider and G. J. Milburn, Phys. Rev. A 65, 042107 (2002)]. We present a scheme to significantly increase the steady-state entanglement by using homodyne-mediated feedback, in which the Bosonic mode is that of an electromagnetic cavity, the output of which is measured and the resulting homodyne photocurrent is used to modulate the field driving the qubits. Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system and the coherent evolution of individual qubits. We present the properties of the entangled states using the SO(3) Q function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a device that allows for the coherent analysis of a pair of optical frequency sidebands in an arbitrary basis. We show that our device is quantum noise limited, and hence applications for this scheme may be found in discrete and continuous variable optical quantum information experiments. (c) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent progress in fabrication and control of single quantum systems presage a nascent technology based on quantum principles. We review these principles in the context of specific examples including: quantum dots, quantum electromechanical systems, quantum communication and quantum computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an implementation of quantum error correction that operates continuously in time and requires no active interventions such as measurements or gates. The mechanism for carrying away the entropy introduced by errors is a cooling procedure. We evaluate the effectiveness of the scheme by simulation, and remark on its connections to some recently proposed error prevention procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a technique to identify exact analytic expressions for the multiquantum eigenstates of a linear chain of coupled qubits. A choice of Hilbert subspaces is described that allows an exact solution of the stationary Schrodinger equation without imposing periodic boundary conditions and without neglecting end effects, fully including the dipole-dipole nearest-neighbor interaction between the atoms. The treatment is valid for an arbitrary coherent excitation in the atomic system, any number of atoms, any size of the chain relative to the resonant wavelength and arbitrary initial conditions of the atomic system. The procedure we develop is general enough to be adopted for the study of excitation in an arbitrary array of atoms including spin chains and one-dimensional Bose-Einstein condensates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present unified, systematic derivations of schemes in the two known measurement-based models of quantum computation. The first model (introduced by Raussendorf and Briegel, [Phys. Rev. Lett. 86, 5188 (2001)]) uses a fixed entangled state, adaptive measurements on single qubits, and feedforward of the measurement results. The second model (proposed by Nielsen, [Phys. Lett. A 308, 96 (2003)] and further simplified by Leung, [Int. J. Quant. Inf. 2, 33 (2004)]) uses adaptive two-qubit measurements that can be applied to arbitrary pairs of qubits, and feedforward of the measurement results. The underlying principle of our derivations is a variant of teleportation introduced by Zhou, Leung, and Chuang, [Phys. Rev. A 62, 052316 (2000)]. Our derivations unify these two measurement-based models of quantum computation and provide significantly simpler schemes.