983 resultados para aromatic carboxylic acid
Resumo:
Four emerging high-energy non-thermal technologies may replace or augment heating for producing sterile low-acid food products. High pressure, high-voltage pulsed electric field, high-energy ultrasound and high-intensity pulsed light are all capable of reducing bacterial spore counts under certain conditions. However, only non-continuous high pressure treatments, at temperatures higher than ambient, are currently capable of completely inactivating spores and producing sterile food products. The first three technologies also reduce the resistance of spores to inactivation by heat.
Resumo:
The influence of change in land-use from native vegetation to pasture (20-71 yr after conversion), and subsequent change from pasture to eucalypt plantation (7-10 yr after conversion) on soil organic matter quality was investigated using C-13 CP/MAS NMR spectroscopy. We studied surface soil (0-10 cm) from six sites representing a range of soil, and climate types from south-western Australia. Total C in the samples ranged from 1.6 to 5.5%, but the relative proportions of the four primary spectral regions (alkyl, O-alkyl, aromatic and carboxylic) were similar across the sites, and changes due to land-use at each site were relatively minor. Main impacts of changed land-use were higher O-alkyl (carbohydrate) material under pasture than under native vegetation and plantation (P = 0.048), and lower aromatic C under pasture than under native vegetation (P = 0.027). The decrease in aromatic C in pasture soils was related to time since clearing. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Adsorption of one nondissociating and four dissociating aromatic compounds onto three untreated activated carbons from dilute aqueous solutions were investigated. All adsorption experiments were preformed in pH-controlled solutions. The experimental isotherms were analyzed using the homogeneous Langmuir model. The surface chemical properties of the activated carbons were characterized using a combination of water adsorption, X-ray photoemission spectroscopy, and mass titration. These data give rise to a new insight into the adsorption mechanism of aromatic solutes, in their molecular and ionic forms, onto untreated activated carbons. It was found that, for the hydrophilic activated carbons, the dominant adsorption forces were observed to be dipolar interactions when the solutes were in their molecular form whereas dispersive forces, such as pi-pi interactions, were most likely dominant in the case of the basic hydrophobic carbons. However, when the solutes were in their ionic form adsorption occurs in all cases through dispersive forces.
Resumo:
Aims : To study the effects of amylomaize starch and modified (carboxymethylated and acetylated) amylomaize starches on the composition of colonic bacteria and the production of volatile fatty acids, in mice. Methods and Results : Balb/c mice were fed with experimental diets containing various amount of amylomaize and modified amylomaize starches. Colonic bacterial populations and short-chain fatty acids were monitored. Results showed that the increases in indigenous bifidobacteria were detected in mice fed all starches tested; however, the highest numbers were observed in the group fed with 40% unmodified amylomaize starch. The starch type influenced the populations of indigenous Lactobacillus , Bacteroides and coliforms. High Lactobacillus numbers were achieved in the colon of mice fed with high concentration of amylomaize starch. Acetylated amylomaize starch significantly reduced the population of coliforms. In addition, orally dosed amylomaize utilizing bifidobacteria reached their highest levels when fed together with amylomaize or carboxymethylated amylomaize starch and in both cases butyrate levels were markedly increased. Conclusions: These results indicate that different amylomaize starches could generate desirable variation in gut microflora and that particular starches may be used to selectively modify gut function. Significance and Impact of Study: Amylomaize starch appeared to enhance the desirable composition of colonic bacteria in mice, and suggested it possessed the potential prebiotic properties.MTherefore, resistant starch and its chemical derivatives may exert beneficial impacts to the human colon.
Resumo:
The adsorption of three aromatic compounds on to an untreated carbon was investigated. The solution pH was lowered in all experiments so that all the solutes were in their molecular forms. It was shown that the difference in the maximum adsorption of the solutes was mainly a result of the difference in the sizes of the molecules and their functional groups. Further-more, it was illustrated that the packing arrangement was most likely edge-to-face (sorbate-sorbent) with various tilt angles. On the other hand, the affinity and heterogeneity of the adsorption systems were apparently related to the pK(a) values of the solutes.
Resumo:
Lipoamino acid-based synthetic peptides (lipid core peptides, LCP) derived from the type-specific and conserved region determinants of group A streptococci (GAS) were evaluated as potential candidate sequences in a vaccine to prevent GAS-associated diseases, including rheumatic heart, disease and poststreptococcal acute glomerulonephritis. The LCP peptides had significantly enhanced immunogenicity as compared with the monomeric peptide epitopes. Furthermore, the peptides incorporated into the LCP system generated epitope-specific antibodies without the use of any conventional adjuvant.
Resumo:
The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct.
Resumo:
The apparent L-[H-3]glutamate uptake rate (v') was measured in synaptic vesicles isolated from cerebral cortex synaptosomes prepared from autopsied Alzheimer and non-Alzheimer dementia cases, and age-matched controls. The initial synaptosome preparations exhibited similar densities of D-[H-3]aspartate membrane binding sites (B-MAX values) in the three groups. In control brain the temporal cortex D-[H-3]aspartate B-MAX was 132% of that in motor cortex, parallel with the L- [H-3]glutamate v' values (temporal = 139% of motor; NS). Unlike D- [H-3]aspartate B-MAX values, L- [H-3]glutamate v' values were markedly and selectively lower in Alzheimer brain preparations than in controls, particularly in temporal cortex. The difference could not be attributed to differential effects of autopsy interval or age at death. Non-Alzheimer dementia cases resembled controls. The selective loss of vesicular glutamate transport is consistent with a dysfunction in the recycling of transmitter glutamate.
Resumo:
Aims: To identify the predominant lactic acid producing bacteria in the small intestine, caecum and the rectum of the healthy pig. Methods and Results: Samples obtained from the large intestine of healthy pigs post-mortem were cultured using a modified agar-MRS medium in roll tubes. Thirteen isolates were selected on the basis of their morphological characteristics and Gram stain reaction for gene sequencing. These isolates were characterized by DNA sequence analysis of 16S rDNA. Eight isolates were identified as Lactobacillus ruminis , two as Enterococcus faecium , one as Mitsuokella multiacidus and two as Escherichia coli . Conclusion: This is the first report of Lact. ruminis as the dominant lactic acid bacteria in the large intestine of the pig. Significance and Impact of the Study: The results suggest that Lact. ruminis is a dominant bacterium in the large intestine of the healthy pig. Future work should focus on the role of this bacterium in relation to the physiological function of the intestine and the health of the animal.
Resumo:
The dissected carcass composition and fatty acid profiles of intermuscular fat from 110 male goat kids from six genotypes i.e. Boer x Angora (BA), Boer x Feral (BF), Boer x Saanen (BS), Feral x Feral (1717), Saanen x Angora (SA) and Saanen x Feral (SF) and two slaughter weight groups i.e. Capretto and Chevon (liveweight at slaughter 14-22 and 30-35 kg, respectively) were compared. Carcass tissue distribution for various genotypes was: muscle (63-66%), fat (10-13%) and bone (21-24%). Genotype significantly (P < 0.05) influenced the carcass composition; BA and FF carcasses had significantly higher muscle to bone ratio, while carcasses from BS kids were leaner compared to other genotypes. However, the two slaughter weight groups did not differ significantly (P > 0.05) in terms of carcass composition, when compared at the same carcass weight. In the present study, significant (P < 0.01) correlations were observed between percentage of muscle, fat and bone in most of the primal cuts and that in the carcass side. The main saturated fatty acids (SFAs) identified were palmitic (16:0) and stearic acid (18:0), while oleic acid (18: 1, omega9) was the main unsaturated fatty acid (UFA) in the intermuscular fat from goat kids. There were significant (P < 0.05) differences between genotypes in the proportions of individual fatty acids. Adipose tissue from BS kids had significantly higher UFAs (mainly oleic acid) and thus had a significantly lower melting point compared to other genotypes. There were significantly higher proportions of palmitic acid (35%) in the adipose tissue from Capretto kids compared to that from Chevon kids (22%). The concentration of UFAs increased in the adipose tissue from Capretto to Chevon carcasses. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Background Peroxisome proliferator activated receptor gamma (PPARgamma) is a ligand-activated transcription factor known to be central to both adipose tissue development and insulin action. Growth of adipose tissue requires differentiation of preadipocytes with acquisition of specific cellular functions including insulin sensitivity, leptin secretion and the capacity to store triglyceride. Dietary fatty acids and members of the thiazolidinedione class of compounds have been reported to influence adipogenesis at the transcriptional level. Here, we compare the effects of a dietary fatty acid, linoleic acid, and a thiazolidinedione, rosiglitazone, on biochemical and functional aspects of human preadipocyte differentiation in vitro . Materials and methods Human omental and subcutaneous preadipocytes were subcultured 2-3 times and subsequently differentiated for 21 days in the presence of either linoleic acid or rosiglitazone. Differentiation was assessed using a number of biochemical and functional parameters. Results Omental and subcutaneous preadipocytes differentiated in the presence of linoleic acid showed marked cytoplasmic triacylglycerol accumulation however, no biochemical markers of differentiation (LPL expression, G3PDH gene expression and enzyme activity and leptin expression or secretion) were detected. In contrast, treatment of these cells with rosiglitazone induced full biochemical differentiation as judged by all markers assessed, despite comparatively little lipid accumulation. The rosiglitazone effects were subcutaneous depot-specific. Cells treated with linoleic acid showed decreased glucose uptake cf rosiglitazone-treated cells. A luciferase reporter assay demonstrated that rosiglitazone potently activates h-peroxisome proliferator activated receptor gamma while linoleic acid had no effect. Conclusions These studies demonstrate that (a) human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation; (b) while omental preadipocytes are refractory to biochemical differentiation in vitro , they are able to accumulate triacylglycerol; and (c) rosiglitazone and linoleic acid may exert their effects via different biochemical pathways.
Resumo:
Disposition kinetics of [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [H-3] palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [H-3] palmitate and metabolites were measured in four experimentalgroups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [H-3] palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [H-3] palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.
Resumo:
A grazing trial was conducted to quantify N cycling in degraded Leucaena leucocephala (leucaena)-Brachiaria decumbens (signal grass) pastures grown on an acid, infertile, podzolic soil in south-east Queensland. Nitrogen accumulation and cycling in leucaena-signal grass pastures were evaluated for 9 weeks until all of the leucaena on offer (mean 600 kg edible dry matter (EDM)/ha, 28% of total pasture EDM) was consumed. Nitrogen pools in the grass, leucaena, soil, cattle liveweight, faeces and urine were estimated. The podzolic soil (pH 4.8-5.9) was found to be deficient in P, Ca and K. Leucaena leaf tissues contained deficient levels of N, P and Ca. Grass tissues were deficient in N and P. Grazing was found to cycle 65% of N on offer in pasture herbage. However, due to the effect of the plant nutrient imbalances described above, biological N fixation by leucaena contributed only 15 kg/ha N to the pasture system over the 9-month regrowth period, of which 13 kg/ha N was cycled. Cattle retained 1.8 kg/ha N (8% of total N consumed) in body tissue and the remainder was excreted in dung and urine in approximately equal proportions. Mineral soil N concentrations did not change significantly (-3.5 kg/ha N) over the trial period. The ramifications of grazing and fertiliser management strategies, and implications for pasture rundown and sustainability are discussed.