772 resultados para arduino risparmio energetico wireless sensor network
Resumo:
The highly unstructured nature of coral reef environments makes them difficult for current robotic vehicles to efficiently navigate. Typical research and commercial platforms have limited autonomy within these environments and generally require tethers and significant external infrastructure. This paper outlines the development of a new robotic vehicle for underwater monitoring and surveying in highly unstructured environments and presents experimental results illustrating the vehicle’s performance. The hybrid AUV design developed by the CSIRO robotic reef monitoring team realises a compromise between endurance, manoeuvrability and functionality. The vehicle represents a new era in AUV design specifically focused at providing a truly low-cost research capability that will progress environmental monitoring through unaided navigation, cooperative robotics, sensor network distribution and data harvesting.
Resumo:
A vast amount of research into autonomous underwater navigation has, and is, being conducted around the world. However, typical research and commercial platforms have limited autonomy and are generally unable to navigate efficiently within coral reef environments without tethers and significant external infrastructure. This paper outlines the development and presents experimental results into the performance evaluation of a new robotic vehicle for underwater monitoring and surveying in highly unstructured environments. The hybrid AUV design developed by the CSIRO robotic reef monitoring team realises a compromise between endurance, manoeuvrability and functionality. The vehicle represents a new era in AUV design specifically focused at providing a truly lowcost research capability that will progress environmental monitoring through unaided navigation, cooperative robotics, sensor network distribution and data harvesting.
Resumo:
ElectricCOW is a network, animal behaviour and agent simulator designed to allow detailed simulation of an ad-hoc model network built from small mote-like devices called flecks. Detailed radio communications, cattle behaviour and sensor and actuator network modelling allows a closed-loop environment, where the network can influence the behaviour of its mobile platforms.
Resumo:
While close talking microphones give the best signal quality and produce the highest accuracy from current Automatic Speech Recognition (ASR) systems, the speech signal enhanced by microphone array has been shown to be an effective alternative in a noisy environment. The use of microphone arrays in contrast to close talking microphones alleviates the feeling of discomfort and distraction to the user. For this reason, microphone arrays are popular and have been used in a wide range of applications such as teleconferencing, hearing aids, speaker tracking, and as the front-end to speech recognition systems. With advances in sensor and sensor network technology, there is considerable potential for applications that employ ad-hoc networks of microphone-equipped devices collaboratively as a virtual microphone array. By allowing such devices to be distributed throughout the users’ environment, the microphone positions are no longer constrained to traditional fixed geometrical arrangements. This flexibility in the means of data acquisition allows different audio scenes to be captured to give a complete picture of the working environment. In such ad-hoc deployment of microphone sensors, however, the lack of information about the location of devices and active speakers poses technical challenges for array signal processing algorithms which must be addressed to allow deployment in real-world applications. While not an ad-hoc sensor network, conditions approaching this have in effect been imposed in recent National Institute of Standards and Technology (NIST) ASR evaluations on distant microphone recordings of meetings. The NIST evaluation data comes from multiple sites, each with different and often loosely specified distant microphone configurations. This research investigates how microphone array methods can be applied for ad-hoc microphone arrays. A particular focus is on devising methods that are robust to unknown microphone placements in order to improve the overall speech quality and recognition performance provided by the beamforming algorithms. In ad-hoc situations, microphone positions and likely source locations are not known and beamforming must be achieved blindly. There are two general approaches that can be employed to blindly estimate the steering vector for beamforming. The first is direct estimation without regard to the microphone and source locations. An alternative approach is instead to first determine the unknown microphone positions through array calibration methods and then to use the traditional geometrical formulation for the steering vector. Following these two major approaches investigated in this thesis, a novel clustered approach which includes clustering the microphones and selecting the clusters based on their proximity to the speaker is proposed. Novel experiments are conducted to demonstrate that the proposed method to automatically select clusters of microphones (ie, a subarray), closely located both to each other and to the desired speech source, may in fact provide a more robust speech enhancement and recognition than the full array could.
Resumo:
This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.
Resumo:
The aim of this paper is to demonstrate the validity of using Gaussian mixture models (GMM) for representing probabilistic distributions in a decentralised data fusion (DDF) framework. GMMs are a powerful and compact stochastic representation allowing efficient communication of feature properties in large scale decentralised sensor networks. It will be shown that GMMs provide a basis for analytical solutions to the update and prediction operations for general Bayesian filtering. Furthermore, a variant on the Covariance Intersect algorithm for Gaussian mixtures will be presented ensuring a conservative update for the fusion of correlated information between two nodes in the network. In addition, purely visual sensory data will be used to show that decentralised data fusion and tracking of non-Gaussian states observed by multiple autonomous vehicles is feasible.
Resumo:
This paper addresses the tradeoff between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty in order to prolong node lifetime. We use empirical GPS and radio contact data from a largescale animal tracking deployment to model node mobility, GPS and radio performance. These models are used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose a versatile contact logging strategy that relies on RSSI ranging and GPS lock back-offs for reducing the node energy consumption relative to GPS duty cycling. Results show that our strategy can cut the node energy consumption by half while meeting application specific positioning criteria.
Resumo:
The impact of urban development and climate change has created the impetus to monitor changes in the environment, particularly, the behaviour, habitat and movement of fauna species. The aim of this chapter is to present the design and development of a sensor network based on smart phones to automatically collect and analyse acoustic and visual data for environmental monitoring purposes. Due to the communication and sophisticated programming facilities offered by smart phones, software tools can be developed to allow data to be collected, partially processed and sent to a remote server over the network for storage and further processing. This sensor network which employs a client-server architecture has been deployed in three applications: monitoring a rare bird species near Brisbane Airport, study of koalas behaviour at St Bees Island, and detection of fruit flies. The users of this system include scientists (e.g. ecologists, ornithologists, computer scientists) and community groups participating in data collection or reporting on the environment (e.g. students, bird watchers). The chapter focuses on the following aspects of our research: issues involved in using smart phones as sensors; the overall framework for data acquisition, data quality control, data management and analysis; current and future applications of the smart phone-based sensor network, and our future research directions.
Resumo:
A diagnostic method based on Bayesian Networks (probabilistic graphical models) is presented. Unlike conventional diagnostic approaches, in this method instead of focusing on system residuals at one or a few operating points, diagnosis is done by analyzing system behavior patterns over a window of operation. It is shown how this approach can loosen the dependency of diagnostic methods on precise system modeling while maintaining the desired characteristics of fault detection and diagnosis (FDD) tools (fault isolation, robustness, adaptability, and scalability) at a satisfactory level. As an example, the method is applied to fault diagnosis in HVAC systems, an area with considerable modeling and sensor network constraints.
Resumo:
In cooperative communication systems, several wireless communication terminals collaborate to form a virtual-multiple antenna array system and exploit the spatial diversity to achieve a better performance. This thesis proposes a practical slotted protocol for cooperative communication systems with half-duplex single antennas. The performance of the proposed slotted cooperative communication protocol is evaluated in terms of the pairwise error probability and the bit error rate. The proposed protocol achieves the multiple-input single-output performance bound with a novel relay ordering and scheduling strategy.
Resumo:
Focuses on the various aspects of advances in future information communication technology and its applications Presents the latest issues and progress in the area of future information communication technology Applicable to both researchers and professionals These proceedings are based on the 2013 International Conference on Future Information & Communication Engineering (ICFICE 2013), which will be held at Shenyang in China from June 24-26, 2013. The conference is open to all over the world, and participation from Asia-Pacific region is particularly encouraged. The focus of this conference is on all technical aspects of electronics, information, and communications ICFICE-13 will provide an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of FICE. In addition, the conference will publish high quality papers which are closely related to the various theories and practical applications in FICE. Furthermore, we expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject. "This work was supported by the NIPA (National IT Industry Promotion Agency) of Korea Grant funded by the Korean Government (Ministry of Science, ICT & Future Planning)."
Resumo:
In this paper we describe cooperative control algorithms for robots and sensor nodes in an underwater environment. Cooperative navigation is defined as the ability of a coupled system of autonomous robots to pool their resources to achieve long-distance navigation and a larger controllability space. Other types of useful cooperation in underwater environments include: exchange of information such as data download and retasking; cooperative localization and tracking; and physical connection (docking) for tasks such as deployment of underwater sensor networks, collection of nodes and rescue of damaged robots. We present experimental results obtained with an underwater system that consists of two very different robots and a number of sensor network modules. We present the hardware and software architecture of this underwater system. We then describe various interactions between the robots and sensor nodes and between the two robots, including cooperative navigation. Finally, we describe our experiments with this underwater system and present data.
Resumo:
This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.
Resumo:
This paper describes a novel Autonomous Surface Vehicle capable of navigating throughout complex inland water storages and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran can collect this information throughout the water column whilst the vehicle is moving. A unique feature of this ASV is its integration into a storage scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper provides an overview of the vehicle design and operation including control, laser-based obstacle avoidance, and vision-based inspection capabilities. Experimental results are shown illustrating its ability to continuously collect key water quality parameters and compliment intensive manual monitoring campaigns.