891 resultados para applied behavior analysis
Resumo:
Communication can be seen as one of the most important features to manage conflicts and the stress of the work teams that operate in environments with strong pressure, complex operations and continuous risk, which are aspects that characterize a high reliability organization. This article aims to highlight the importance of communication in high-reliability organizations, having as object of study the accidents and incidents in civil aviation area. It refers to a qualitative research, outlined by documental analysis based on investigations conducted by the Federal Aviation Administration and the Center of Investigation and Prevention of Aeronautical Accidents. The results point out that human errors account for 60 to 80 percent of accidents and incidents. Most of these occurrences are attributed to miscommunication between the professionals involved with the air and ground operation, such as pilots, crewmembers and maintenance staff, and flight controllers. Inappropriate tone of voice usage, difficulties to understand different accents between the issuer and the receiver or even difficulty to perceive red flags between the lines of verbal and non-verbal communication, are elements that contribute to the fata of understanding between people involved in the operation. As a research limitation this present research pointed out a lack of a special category of "interpersonal communications failures" in the official agency reports. So, the researchers must take the conceptual definition of "social ability", communication implied, to classify behaviors and communication matters accordingly. Other research finding indicates that communication is superficially approached in the contents of air operations courses what could mitigate the lack of communications skills as a social ability. Part of the research findings refers to the contents of communication skills development into the program to train professional involved in air flight and ground operations. So, it is expected that this present article gives an appropriate highlight towards the improvement of flight operations training programs. Developing communication skills among work teams in high reliability organizations can contribute to mitigate stress, accidents and incidents in Civil Aviation Field. The original contribution of this article is the proposal of the main contents that should be developed in a Communication Skills Training Program, specially addressed to Civil Aviation operations.
Resumo:
Mathematical models are increasingly used in environmental science thus increasing the importance of uncertainty and sensitivity analyses. In the present study, an iterative parameter estimation and identifiability analysis methodology is applied to an atmospheric model – the Operational Street Pollution Model (OSPMr). To assess the predictive validity of the model, the data is split into an estimation and a prediction data set using two data splitting approaches and data preparation techniques (clustering and outlier detection) are analysed. The sensitivity analysis, being part of the identifiability analysis, showed that some model parameters were significantly more sensitive than others. The application of the determined optimal parameter values was shown to succesfully equilibrate the model biases among the individual streets and species. It was as well shown that the frequentist approach applied for the uncertainty calculations underestimated the parameter uncertainties. The model parameter uncertainty was qualitatively assessed to be significant, and reduction strategies were identified.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This paper discusses areas for future research opportunities by addressing accounting issues faced by management accountants practicing in hospitality organizations. Specifically, the article focuses on the use of the uniform system of accounts by operating properties, the usefulness of allocating support costs to operated departments, extending our understanding of operating costs and performance measurement systems and the certification of practicing accountants.
Resumo:
Les courriels Spams (courriels indésirables ou pourriels) imposent des coûts annuels extrêmement lourds en termes de temps, d’espace de stockage et d’argent aux utilisateurs privés et aux entreprises. Afin de lutter efficacement contre le problème des spams, il ne suffit pas d’arrêter les messages de spam qui sont livrés à la boîte de réception de l’utilisateur. Il est obligatoire, soit d’essayer de trouver et de persécuter les spammeurs qui, généralement, se cachent derrière des réseaux complexes de dispositifs infectés, ou d’analyser le comportement des spammeurs afin de trouver des stratégies de défense appropriées. Cependant, une telle tâche est difficile en raison des techniques de camouflage, ce qui nécessite une analyse manuelle des spams corrélés pour trouver les spammeurs. Pour faciliter une telle analyse, qui doit être effectuée sur de grandes quantités des courriels non classés, nous proposons une méthodologie de regroupement catégorique, nommé CCTree, permettant de diviser un grand volume de spams en des campagnes, et ce, en se basant sur leur similarité structurale. Nous montrons l’efficacité et l’efficience de notre algorithme de clustering proposé par plusieurs expériences. Ensuite, une approche d’auto-apprentissage est proposée pour étiqueter les campagnes de spam en se basant sur le but des spammeur, par exemple, phishing. Les campagnes de spam marquées sont utilisées afin de former un classificateur, qui peut être appliqué dans la classification des nouveaux courriels de spam. En outre, les campagnes marquées, avec un ensemble de quatre autres critères de classement, sont ordonnées selon les priorités des enquêteurs. Finalement, une structure basée sur le semiring est proposée pour la représentation abstraite de CCTree. Le schéma abstrait de CCTree, nommé CCTree terme, est appliqué pour formaliser la parallélisation du CCTree. Grâce à un certain nombre d’analyses mathématiques et de résultats expérimentaux, nous montrons l’efficience et l’efficacité du cadre proposé.
Resumo:
One of the most challenging task underlying many hyperspectral imagery applications is the spectral unmixing, which decomposes a mixed pixel into a collection of reectance spectra, called endmember signatures, and their corresponding fractional abundances. Independent Component Analysis (ICA) have recently been proposed as a tool to unmix hyperspectral data. The basic goal of ICA is to nd a linear transformation to recover independent sources (abundance fractions) given only sensor observations that are unknown linear mixtures of the unobserved independent sources. In hyperspectral imagery the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be independent. This paper address hyperspectral data source dependence and its impact on ICA performance. The study consider simulated and real data. In simulated scenarios hyperspectral observations are described by a generative model that takes into account the degradation mechanisms normally found in hyperspectral applications. We conclude that ICA does not unmix correctly all sources. This conclusion is based on the a study of the mutual information. Nevertheless, some sources might be well separated mainly if the number of sources is large and the signal-to-noise ratio (SNR) is high.
Resumo:
Although the benefits of mindfulness meditation practices have been widely documented, research data suggest that there are barriers to regularly engaging in meditation behavior. In order to explore research questions pertaining to meditation initiation and adherence, psychometrically valid scales to assess barriers to meditation practice are necessary. The aim of the present study was to explore the factor structure and construct validity of the Determinants of Meditation Practice Inventory (DMPI) (Williams et al., 2011), a perceived barriers to meditation scale. Exploratory and confirmatory factor analyses along with construct validity tests were performed on data obtained from two large, community samples. Results supported the DMPI as a valid scale assessing perceived barriers with four factors, Lack of Interest, Knowledge Concerns, Pragmatic Concerns and Sociocultural Beliefs. The present study offers a DMPI-revised scale that may be reliably used to assess attitudes and beliefs that might impede meditation behavior.
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
The dissertation is devoted to the study of problems in calculus of variation, free boundary problems and gradient flows with respect to the Wasserstein metric. More concretely, we consider the problem of characterizing the regularity of minimizers to a certain interaction energy. Minimizers of the interaction energy have a somewhat surprising relationship with solutions to obstacle problems. Here we prove and exploit this relationship to obtain novel regularity results. Another problem we tackle is describing the asymptotic behavior of the Cahn-Hilliard equation with degenerate mobility. By framing the Cahn-Hilliard equation with degenerate mobility as a gradient flow in Wasserstein metric, in one space dimension, we prove its convergence to a degenerate parabolic equation under the framework recently developed by Sandier-Serfaty.
Resumo:
O fogo é um processo frequente nas paisagens do norte de Portugal. Estudos anteriores mostraram que os bosques de azinheira (Quercus rotundifolia) persistem após a passagem do fogo e ajudam a diminuir a sua intensidade e taxa de propagação. Os principais objetivos deste estudo foram compreender e modelar o efeito dos bosques de azinheira no comportamento do fogo ao nível da paisagem da bacia superior do rio Sabor, localizado no nordeste de Portugal. O impacto dos bosques de azinheira no comportamento do fogo foi testado em termos de área e configuração de acordo com cenários que simulam a possível distribuição destas unidades de vegetação na paisagem, considerando uma percentagem de ocupação da azinheira de 2.2% (Low), 18.1% (Moderate), 26.0% (High), e 39.8% (Rivers). Estes cenários tiveram como principal objetivo testar 1) o papel dos bosques de azinheira no comportamento do fogo e 2) de que forma a configuração das manchas de azinheira podem ajudar a diminuir a intensidade da linha de fogo e área ardida. Na modelação do comportamento do fogo foi usado o modelo FlamMap para simular a intensidade de linha do fogo e taxa de propagação do fogo com base em modelos de combustível associados a cada ocupação e uso do solo presente na área de estudo, e também com base em fatores topográficos (altitude, declive e orientação da encosta) e climáticos (humidade e velocidade do vento). Foram ainda usados dois modelos de combustível para a ocupação de azinheira (áreas interiores e de bordadura), desenvolvidos com base em dados reais obtidos na região. Usou-se o software FRAGSATS para a análise dos padrões espaciais das classes de intensidade de linha do fogo, usando-se as métricas Class Area (CA), Number of Patches (NP) e Large Patches Index (LPI). Os resultados obtidos indicaram que a intensidade da linha de fogo e a taxa de propagação do fogo variou entre cenários e entre modelos de combustível para o azinhal. A intensidade média da linha de fogo e a taxa média de propagação do fogo decresceu à medida que a percentagem de área de bosques de azinheira aumentou na paisagem. Também foi observado que as métricas CA, NP e LPI variaram entre cenários e modelos de combustível para o azinhal, decrescendo quando a percentagem de área de bosques de azinheira aumentou. Este estudo permitiu concluir que a variação da percentagem de ocupação e configuração espacial dos bosques de azinheira influenciam o comportamento do fogo, reduzindo, em termos médios, a intensidade da linha de fogo e a taxa de propagação, sugerindo que os bosques de azinhal podem ser usados como medidas silvícolas preventivas para diminuir o risco de incêndio nesta região.
Resumo:
Animal welfare issues have received much attention not only to supply farmed animal requirements, but also to ethical and cultural public concerns. Daily collected information, as well as the systematic follow-up of production stages, produces important statistical data for production assessment and control, as well as for improvement possibilities. In this scenario, this research study analyzed behavioral, production, and environmental data using Main Component Multivariable Analysis, which correlated observed behaviors, recorded using video cameras and electronic identification, with performance parameters of female broiler breeders. The aim was to start building a system to support decision-making in broiler breeder housing, based on bird behavioral parameters. Birds were housed in an environmental chamber, with three pens with different controlled environments. Bird sensitivity to environmental conditions were indicated by their behaviors, stressing the importance of behavioral observations for modern poultry management. A strong association between performance parameters and the behavior at the nest, suggesting that this behavior may be used to predict productivity. The behaviors of ruffling feathers, opening wings, preening, and at the drinker were negatively correlated with environmental temperature, suggesting that the increase of in the frequency of these behaviors indicate improvement of thermal welfare.
Resumo:
Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.