934 resultados para anti-tumor
Resumo:
A series of macrobicyclic dizinc(II) complexes Zn2L1-2B](ClO4)(4) (1-6) have been synthesized and characterized (L1-2 are polyaza macrobicyclic binucleating ligands, and B is the N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)). The DNA and protein binding, DNA hydrolysis and anticancer activity of these complexes were investigated. The interactions of complexes 1-6 with calf thymus DNA were studied by spectroscopic techniques, including absorption, fluorescence and CD spectroscopy. The DNA binding constant values of the complexes were found to range from 2.80 x 10(5) to 5.25 x 10(5) M-1, and the binding affinities are in the following order: 3 > 6 > 2 > 5 > 1 > 4. All the dizinc(II) complexes 1-6 are found to effectively promote the hydrolytic cleavage of plasmid pBR322 DNA under anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 3 and 6 under physiological conditions give observed rate constants (k(obs)) of 5.56 +/- 0.1 and 5.12 +/- 0.2 h(-1), respectively, showing a 10(7)-fold rate acceleration over the uncatalyzed reaction of dsDNA. Remarkably, the macrobicyclic dizinc(II) complexes 1-6 bind and cleave bovine serum albumin (BSA), and effectively promote the caspase-3 and caspase-9 dependent deaths of HeLa and BeWo cancer cells. The cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme levels in cancer cell lysate and content media.
Resumo:
Resistance to therapy limits the effectiveness of drug treatment in many diseases. Drug resistance can be considered as a successful outcome of the bacterial struggle to survive in the hostile environment of a drug-exposed cell. An important mechanism by which bacteria acquire drug resistance is through mutations in the drug target. Drug resistant strains (multi-drug resistant and extensively drug resistant) of Mycobacterium tuberculosis are being identified at alarming rates, increasing the global burden of tuberculosis. An understanding of the nature of mutations in different drug targets and how they achieve resistance is therefore important. An objective of this study is to first decipher sequence as well as structural bases for the observed resistance in known drug resistant mutants and then to predict positions in each target that are more prone to acquiring drug resistant mutations. A curated database containing hundreds of mutations in the 38 drug targets of nine major clinical drugs, associated with resistance is studied here. Mutations have been classified into those that occur in the binding site itself, those that occur in residues interacting with the binding site and those that occur in outer zones. Structural models of the wild type and mutant forms of the target proteins have been analysed to seek explanations for reduction in drug binding. Stability analysis of an entire array of 19 mutations at each of the residues for each target has been computed using structural models. Conservation indices of individual residues, binding sites and whole proteins are computed based on sequence conservation analysis of the target proteins. The analyses lead to insights about which positions in the polypeptide chain have a higher propensity to acquire drug resistant mutations. Thus critical insights can be obtained about the effect of mutations on drug binding, in terms of which amino acid positions and therefore which interactions should not be heavily relied upon, which in turn can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. The methodology can serve as a general framework to study drug resistant mutants in other micro-organisms as well.
Resumo:
Background: The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. Methodology/Principal Findings: Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB) fruits in leukaemia (CEM) and breast cancer (T47D) cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration-and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. Conclusions/Significance: The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.
Resumo:
The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates beta-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3'-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.
Resumo:
Mutations in the MCPH1 (microcephalin 1) gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS) gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC) samples, and observed that 14/71 (19.72%) informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22%) and 19/25 (76%) OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10%) tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.
Resumo:
Combating stress is one of the prime requirements for any organism. For parasitic microbes, stress levels are highest during the growth inside the host. Their survival depends on their ability to acclimatize and adapt to new environmental conditions. Robust cellular machinery for stress response is, therefore, both critical and essential especially for pathogenic microorganisms. Microbes have cleverly exploited stress proteins as virulence factors for pathogenesis in their hosts. Owing to its ability to sense and respond to the stress conditions, Heat shock protein 90 (Hsp90) is one of the key stress proteins utilized by parasitic microbes. There are growing evidences for the critical role played by Hsp90 in the growth of pathogenic organisms like Candida, Giardia, Plasmodium, Trypanosoma, and others. This review, therefore, explores potential of exploiting Hsp90 as a target for the treatment of infectious diseases. This molecular chaperone has already gained attention as an effective anti-cancer drug target. As a result, a lot of research has been done at laboratory, preclinical and clinical levels for several Hsp90 inhibitors as potential anti-cancer drugs. In addition, lot of data pertaining to toxicity studies, pharmacokinetics and pharmacodynamics studies, dosage regime, drug related toxicities, dose limiting toxicities as well as adverse drug reactions are available for Hsp90 inhibitors. Therefore, repurposing/repositioning strategies are also being explored for these compounds which have gone through advanced stage clinical trials. This review presents a comprehensive summary of current status of development of Hsp90 as a drug target and its inhibitors as candidate anti-infectives. A particular emphasis is laid on the possibility of repositioning strategies coupled with pharmaceutical solutions required for fulfilling needs for ever growing pharmaceutical infectious disease market.
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent.
Resumo:
Major emphasis, in compressed sensing (CS) research, has been on the acquisition of sub-Nyquist number of samples of a signal that has a sparse representation on some tight frame or an orthogonal basis, and subsequent reconstruction of the original signal using a plethora of recovery algorithms. In this paper, we present compressed sensing data acquisition from a different perspective, wherein a set of signals are reconstructed at a sampling rate which is a multiple of the sampling rate of the ADCs that are used to measure the signals. We illustrate how this can facilitate usage of anti-aliasing filters with relaxed frequency specifications and, consequently, of lower order.
Resumo:
Thirteen new solid forms of etravirine were realized in the process of polymorph and cocrystal/salt screening to improve the solubility of this anti-HIV drug. One anhydrous form, five salts (hydrochloride, mesylate, sulfate, besylate, and tosylate), two cocrystals (with adipic acid and 1,3,5-benzenetricarboxylic acid), and five solvates (formic acid, acetic acid, acetonitrile, and 2:1 and 1:1 methanolates) were obtained. The conformational flexibility of etravirine suggests that it can adopt four different conformations, and among these, two are sterically favorable. However, in all 13 solid forms, the active pharmaceutical ingredient (API) was found to adopt just one conformation. Due to the poor aqueous solubility of the API, the solubilities of the salts and cocrystals were measured in a 50% ethanol water mixture at neutral pH. Compared to the salts, the cocrystals were found to be stable and showed an improvement in solubility with time. All the salts were dissociated within an hour, except the tosylate, which showed 50% phase transformation after 1 h of the slurry experiment. A structure property relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
A series of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazoles 9a-j were obtained via multistep synthesis from hydroxybenzophenones 4a-e. The cytotoxicity of compounds 9a-j was evaluated against human leukemia cell lilies (K562 and CEM). The compounds exhibited moderate to good anti-cancer activity with compounds 9b and 9i having a chloro group exhibiting the best activity (IC50 = 10 mu M). Compound 9i exhibited activity against both the cell lines and 9b only exhibited activity against CEM. Further, a lactate dehydrogenase (LDH) assay and DNA fragmentation studies of the compounds 9a-j were also performed. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
The Wilms tumor 1 gene (WT1) can either repress or induce the expression of genes. Inconsistent with its tumor suppressor role, elevated WT1 levels have been observed in leukemia and solid tumors. WT1 has also been suggested to act as an oncogene by inducing the expression of MYC and BCL-2. However, these are only the correlational studies, and no functional study has been performed to date. Consistent with its tumor suppressor role, CDC73 binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex and causes transcriptional repression of oncogenes MYC and CCND1. It also represses beta-catenin-mediated transcription. Based on the reduced level of CDC73 in oral squamous cell carcinoma (OSCC) samples in the absence of loss-of-heterozygosity, promoter methylation, and mutations, we speculated that an inhibitory transcription factor is regulating its expression. The bioinformatics analysis predicted WT1 as an inhibitory transcription factor to regulate the CDC73 level. Our results showed that overexpression of WT1 decreased CDC73 levels and promoted proliferation of OSCC cells. ChIP and EMSA results demonstrated binding of WT1 to the CDC73 promoter. The 5-azacytidine treatment of OSCC cells led to an up-regulation of WT1 with a concomitant down-regulation of CDC73, further suggesting regulation of CDC73 by WT1. Exogenous CDC73 attenuated the protumorigenic activity of WT1 by apoptosis induction. An inverse correlation between expression levels of CDC73 and WT1 was observed in OSCC samples. These observations indicated that WT1 functions as an oncogene by repressing the expression of CDC73 in OSCC. We suggest that targeting WT1 could be a therapeutic strategy for cancer, including OSCC.
Resumo:
Background: Antiretroviral Therapy (ART) is currently the major therapeutic intervention in the treatment of AIDS. ART, however, is severely limited due to poor availability, high cytotoxicity, and enhanced metabolism and clearance of the drug molecules by the renal system. The use of nanocarriers encapsulating the antiretroviral drugs may provide a solution to the aforementioned problems. Importantly, the application of mildly immunogenic polymeric carrier confers the advantage of making the nanoparticles more visible to the immune system leading to their efficient uptake by the phagocytes. Methods: The saquinavir-loaded chitosan nanopartides were characterized by transmission electron microscopy and differential scanning calorimetry and analyzed for the encapsulation efficiency, swelling characteristics, particle size properties, and the zeta potential. Furthermore, cellular uptake of the chitosan nanocarriers was evaluated using confocal microscopy and Flow cytometry. The antiviral efficacy was quantified using viral infection of the target cells. Results: Using novel chitosan carriers loaded with saquinavir, a protease inhibitor, we demonstrate a drug encapsulation efficiency of 75% and cell targeting efficiency greater than 92%. As compared to the soluble drug control, the saquinavir-loaded chitosan carriers caused superior control of the viral proliferation as measured by using two different viral strains, NL4-3 and Indie-C1, and two different target T-cells, Jurkat and CEM-CCR5. Conclusion: Chitosan nanoparticles loaded with saquinavir were characterized and they demonstrated superior drug loading potential with greater cell targeting efficiency leading to efficient control of the viral proliferation in target T-cells. General significance: Our data ascertain the potential of chitosan nanocarriers as novel vehicles for HIV-1 therapeutics. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Glucose-appended photocytotoxic iron(III) complexes of a tridentate Schiff base phenolate ligand Fe(bpyag) (L)] (NO3) (1-3), where bpyag is N,N-bis(2- pyridylmethyl)-2-aminoethyl-beta-D-glucopyranoside and H2L is 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (H(2)phap) in 1, 3-(2-hydroxyphenylimino)-9-anthrylbutan-1-one (H(2)anap) 2, and 3- (2-hydroxyphenylimino)-1-pyrenylbutan-1-one (H(2)pyap) in 3, were synthesized and characterized. The complex Fe(dpma)(anapn(NO3) (4), having bis-(2-pyridylmethyl)benzylamine (dpma), in which the glucose moiety of bpyag is substituted by a phenyl group, was used as a control, and the complex Fe(dpma)(anap)](PF6) (4a) was structurally characterized by X-ray crystallography. The structure shows a FeN4O2 core in a distorted octahedral geometry. The high-spin iron(III) complexes with magnetic moment value of similar to 5.9 mu(B) showed a low-energy phenolate-to-Fe(III) charge-transfer (CT) absorption band as a shoulder near 500 nm with a tail extending to 700 nm and an irreversible Fe(III)-Fe(II) redox couple near -0.6 V versus saturated calomel electrode. The complexes are avid binders to calf thymus DNA and showed photocleavage of supercoiled pUC19 DNA in red (647 nm) and green (532 nm) light. Complexes 2 and 3 displayed significant photocytotoxicity in red light, with an IC50 value of similar to 20 mu M in HeLa and HaCaT cells, and no significant toxicity in dark. The cell death is via an apoptotic pathway, by generation of reactive oxygen species. Preferential internalization of the carbohydrate-appended complexes 2 and 3 was evidenced in HeLa cells as compared to the control complex 4. A 5-fold increase in the cellular uptake was observed for the active complexes in HeLa cells. The photophysical properties of the complexes are rationalized from the density functional theory calculations.
Resumo:
The host-pathogen interactions in Mycobacterium tuberculosis infection are significantly influenced by redox stimuli and alterations in the levels of secreted antigens. The extracyto-plasmic function (ECF) sigma factor sigma(K) governs the transcription of the serodominant antigens MPT70 and MPT83. The cellular levels of sigma(K) are regulated by the membrane-associated anti-sigma(K) (RskA) that localizes sigma(K) in an inactive complex. The crystal structure of M. tuberculosis sigma(K) in complex with the cytosolic domain of RskA (RskAcyto) revealed a disulfide bridge in the -35 promoter-interaction region of sigma(K). Biochemical experiments reveal that the redox potential of the disulfide-forming cysteines in sigma(K) is consistent with its role as a sensor. The disulfide bond in sigma(K) influences the stability of the sigma(K)-RskA(cyto) complex but does not interfere with sigma(K)-promoter DNA interactions. It is noted that these disulfide-forming cysteines are conserved across homologues, suggesting that this could be a general mechanism for redox-sensitive transcription regulation.
Resumo:
BiEuO3 (BE) and BiGdO3 (BG) are synthesized by the solid-state reaction technique. Rietveld refinement of the X-ray diffraction data shows that the samples are crystallized in cubic phase at room temperature having Fm3m symmetry with the lattice parameters of 5.4925(2) and 5.4712(2) A for BE and BG, respectively. Raman spectra of the samples are investigated to obtain the phonon modes of the samples. The dielectric properties of the samples are investigated in the frequency range from 42 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. An analysis of the real and imaginary parts of impedance is performed assuming a distribution of relaxation times as confirmed by the Cole-Cole plots. The frequency-dependent maxima in the loss tangent are found to obey an Arrhenius law with activation energy similar to 1 eV for both the samples. The frequency-dependent electrical data are also analyzed in the framework of conductivity formalism. Magnetization of the samples are measured under the field cooled (EC) and zero field cooled (ZFC) modes in the temperature range from 5 K to 300 K applying a magnetic Field of 500 Oe. The FC and ZFC susceptibilities show that BE is a Van Vleck paramagnetic material with antiferromagnetic coupling at low temperature whereas BG is an anti-ferromagnetic system. The results are substantiated by the M-11 loops of the materials taken at 5 K in the ZFC mode. (C) 2014 Elsevier B.V. All rights reserved