935 resultados para anterior segment length
Resumo:
Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures.
Resumo:
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 +"1" trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.
Resumo:
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 +"1" trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.
Resumo:
INTRODUCTION: Apical surgery is an important treatment option for teeth with post-treatment periodontitis. Although apical surgery involves root-end resection, no morphometric data are yet available about root-end resection and its impact on the root-to-crown ratio (RCR). The present study assessed the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS: In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47 patients) were measured before and after apical surgery. Data were collected relative to the cementoenamel junction (CEJ) as well as to the crestal bone level (CBL). One observer took all measurements twice (to calculate the intraobserver variability), and the means were used for further analysis. The following parameters were assessed for all treated teeth as well as for specific tooth groups: length of root-end resection and percentage change of root length, preoperative and postoperative RCRs, and percentage change of RCR after apical surgery. RESULTS: The mean length of root-end resection was 3.58 ± 1.43 mm (relative to the CBL). This amounted to a loss of 33.2% of clinical and 26% of anatomic root length. There was an overall significant difference between the tooth groups (P < .05). There was also a statistically significant difference comparing mandibular and maxillary teeth (P < .05), but not for incisors/canines versus premolars/molars (P = .125). The mean preoperative and postoperative RCRs (relative to CEJ) were 1.83 and 1.35, respectively (P < .001). With regard to the CBL reference, the mean preoperative and postoperative RCRs were 1.08 and 0.71 (CBL), respectively (P < .001). The calculated changes of RCR after apical surgery were 24.8% relative to CEJ and 33.3% relative to CBL (P < .001). Across the different tooth groups, the mean RCR was not significantly different (P = .244 for CEJ and 0.114 for CBL). CONCLUSIONS: This CBCT-based study demonstrated that the RCR is significantly changed after root-end resection in apical surgery irrespective of the clinical (CBL) or anatomic (CEJ) reference levels. The lowest, and thus clinically most critical, postoperative RCR was observed in maxillary incisors. Future clinical studies need to show the impact of resection length and RCR changes on the outcome of apical surgery.
Resumo:
The principal aim of this study is to clarify the requirements of segment reporting and compare the requirements with the actual! implementation on different business lines. The empirical part was concluded by interviewing randomly selected companies that are publicly listed on the Helsinki Exchanges. The theoretical part of the study (chapters 2 and 3) will give basic information about shifting to IAS -standards and the requirements of IAS -standards. In order to meet the principal aim, a pre-empiric research was conducted by studying the annual accounts (year 2002) of randomly selected companies that already follow the IAS -standards of reporting. The companies in the pre-empiric research consist of both domestic and foreign companies. The aim of the pre-empiric study was to give a basis for the interview process on the empiric part of the study. The study indicates that implementing segment reporting has not brought any major concerns or problems. This is due to the fact that most companies that were examined - being publicly listed companies - have traditionally had a clear division between their geographical and commercial segments, and also been obliged to give reports according to these segments. In case of changes in corporate structure, shifting on new lines of businesses or downsizing of operations, the problems in reporting according to IAS -standards, may arise. Such changes will also require changes on information systems, providing the essential information for segment reporting. According to this study, most companies choose the commercial segment as their primary segment for reporting. The pre-empiric study indicates, that most of the companies already following the IAS -standards, still have a lot of improvement to do, in order to meet all the IAS requirements.
Resumo:
INTRODUCTION: Mitral isthmus (MI) ablation is an effective option in patients undergoing ablation for persistent atrial fibrillation (AF). Achieving bidirectional conduction block across the MI is challenging, and predictors of MI ablation success remain incompletely understood. We sought to determine the impact of anatomical location of the ablation line on the efficacy of MI ablation. METHODS AND RESULTS: A total of 40 consecutive patients (87% male; 54 ± 10 years) undergoing stepwise AF ablation were included. MI ablation was performed in sinus rhythm. MI ablation was performed from the left inferior PV to either the posterior (group 1) or the anterolateral (group 2) mitral annulus depending on randomization. The length of the MI line (measured with the 3D mapping system) and the amplitude of the EGMs at 3 positions on the MI were measured in each patient. MI block was achieved in 14/19 (74%) patients in group 1 and 15/21 (71%) patients in group 2 (P = NS). Total MI radiofrequency time (18 ± 7 min vs. 17 ± 8 min; P = NS) was similar between groups. Patients with incomplete MI block had a longer MI length (34 ± 6 mm vs. 24 ± 5 mm; P < 0.001), a higher bipolar voltage along the MI (1.75 ± 0.74 mV vs. 1.05 ± 0.69 mV; P < 0.01), and a longer history of continuous AF (19 ± 17 months vs. 10 ± 10 months; P < 0.05). In multivariate analysis, decreased length of the MI was an independent predictor of successful MI block (OR 1.5; 95% CI 1.1-2.1; P < 0.05). CONCLUSIONS: Increased length but not anatomical location of the MI predicts failure to achieve bidirectional MI block during ablation of persistent AF.
Resumo:
Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in β band) in slices of the mouse anterior cingulate cortex (ACC). We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets (PNNs) enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia (SZ) patients who display prefrontal anomalies of both the dopaminergic system and the PNNs.
Resumo:
Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo-tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo-tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo-tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.
Resumo:
Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.