859 resultados para agricultural machine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quadratic programming techniques were applied to household food consumption data in England and Wales to estimate likely changes in diet under healthy eating guidelines, and the consequences this would have on agriculture and land use in England and Wales. The first step entailed imposing nutrient restrictions on food consumption following dietary recommendations suggested by the UK Department of Health. The resulting diet was used, in a second step as a proxy for demand in agricultural commodities, to test the impact of such a scenario on food production and land use in England and Wales and the impacts of this on agricultural landscapes. Results of the diet optimisation indicated a large drop in consumption of foods rich in saturated fats and sugar, essentially cheese and sugar-based products, along with lesser cuts of fat and meat products. Conversely, consumption of fruit and vegetables, cereals, and flour would increase to meet dietary fibre recommendations. Such a shift in demand would dramatically affect production patterns: the financial net margin of England and Wales agriculture would rise, due to increased production of high market value and high economic margin crops. Some regions would, however, be negatively affected, mostly those dependent on beef cattle and sheep production that could not benefit from an increased demand for cereals and horticultural crops. The effects of these changes would also be felt in upstream industries, such as animal feed suppliers. While arable dominated landscapes would be little affected, pastoral landscapes would suffer through loss of grazing management and, possibly, land abandonment, especially in upland areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the perspex machine which unifies projective geometry and the Turing machine, resulting in a supra-Turing machine. Specifically, we show that a Universal Register Machine (URM) can be implemented as a conditional series of whole numbered projective transformations. This leads naturally to a suggestion that it might be possible to construct a perspex machine as a series of pin-holes and stops. A rough calculation shows that an ultraviolet perspex machine might operate up to the petahertz range of operations per second. Surprisingly, we find that perspex space is irreversible in time, which might make it a candidate for an anisotropic spacetime geometry in physical theories. We make a bold hypothesis that the apparent irreversibility of physical time is due to the random nature of quantum events, but suggest that a sum over histories might be achieved by sampling fluctuations in the direction of time flow. We propose an experiment, based on the Casimir apparatus, that should measure fluctuations of time flow with respect to time duration- if such fluctuations exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available on the world wide web. The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by similar geometrical and computational constraints in perspex and biological neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three potential explanations of past reforms of the Common Agricultural Policy (CAP) can be identified in the literature: a budget constraint, pressure from General Agreement on Tariffs and Trade/World Trade Organization (GATT/WTO) negotiations or commitments and a paradigm shift emphasising agriculture’s provision of public goods. This discussion on the driving forces of CAP reform links to broader theoretical questions on the role of budgetary politics, globalisation of public policy and paradigm shift in explaining policy change. In this article, the Health Check reforms of 2007/2008 are assessed. They were probably more ambitious than first supposed, although it was a watered-down package agreed by ministers in November 2008. We conclude that the Health Check was not primarily driven by budget concerns or by the supposed switch from the state-assisted to the multifunctional policy paradigm. The European Commission’s wish to adopt an offensive negotiating stance in the closing phases of the Doha Round was a more likely explanatory factor. The shape and purpose of the CAP post-2013 is contested with divergent views among the Member States.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In high speed manufacturing systems, continuous operation is desirable, with minimal disruption for repairs and service. An intelligent diagnostic monitoring system, designed to detect developing faults before catastrophic failure, or prior to undesirable reduction in output quality, is a good means of achieving this. Artificial neural networks have already been found to be of value in fault diagnosis of machinery. The aim here is to provide a system capable of detecting a number of faults, in order that maintenance can be scheduled in advance of sudden failure, and to reduce the necessity to replace parts at intervals based on mean time between failures. Instead, parts will need to be replaced only when necessary. Analysis of control information in the form of position error data from two servomotors is described.