909 resultados para activation-tagging
Resumo:
Cochin University of Science and Technology
Resumo:
The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to b subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.
Resumo:
With the present research, we investigated effects of existential threat on veracity judgments. According to several meta-analyses, people judge potentially deceptive messages of other people as true rather than as false (so-called truth bias). This judgmental bias has been shown to depend on how people weigh the error of judging a true message as a lie (error 1) and the error of judging a lie as a true message (error 2). The weight of these errors has been further shown to be affected by situational variables. Given that research on terror management theory has found evidence that mortality salience (MS) increases the sensitivity toward the compliance of cultural norms, especially when they are of focal attention, we assumed that when the honesty norm is activated, MS affects judgmental error weighing and, consequently, judgmental biases. Specifically, activating the norm of honesty should decrease the weight of error 1 (the error of judging a true message as a lie) and increase the weight of error 2 (the error of judging a lie as a true message) when mortality is salient. In a first study, we found initial evidence for this assumption. Furthermore, the change in error weighing should reduce the truth bias, automatically resulting in better detection accuracy of actual lies and worse accuracy of actual true statements. In two further studies, we manipulated MS and honesty norm activation before participants judged several videos containing actual truths or lies. Results revealed evidence for our prediction. Moreover, in Study 3, the truth bias was increased after MS when group solidarity was previously emphasized.
Resumo:
Cyclic GMP-dependent protein kinase (PKG) is a key transducer in the NO-cGMP signaling pathway. In this line, PKG has been considered an important drug target for treating hypertensive cardiovascular and pulmonary diseases. However, the investigation of PKG’s allosteric activation mechanism has been hampered by a lack of structural information. One of the fundamental questions on the cGMP-dependent activation of PKG is how the enzyme can distinguish cGMP over cAMP and selectively respond to cGMP. To ensure proper signaling, PKG must have developed unique features to ensure its activation upon the right activation signal. In this thesis, the cGMP-selective activation mechanism of PKG was studied through determining crystal structures of three truncated constructs of the regulatory domain [CNB-A (92-227), CNB-B (271-369), and CNB-A/B (92-351)] of PKG Iβ in the absence or presence of cyclic nucleotides. Herein, two individual CNB domain structures with biochemical data revealed that the C-terminal CNB domain (CNB-B) is responsible for cGMP selectivity, while the N-terminal CNB-domain (CNB-A) has a higher binding affinity for both cGMP and cAMP without showing any selectivity. Based on these crystal structures, mutagenesis studies were performed in which the critical residues for cyclic nucleotide selectivity and activation were identified. Furthermore, we discovered that the conformational changes of the C-terminal helix of the CNB-B that bridges between the regulatory and catalytic domains including the hydrophobic capping interaction are crucial for PKG activation. In addition, to observe the global conformation of the activated R-domain, I solved a co-crystal structure of the CNB-A/B with cGMP. Although a monomeric construct was crystallized, the structure displays a dimer. Strikingly, the CNB-A domain and its bound cGMP provide a key interface for this dimeric interaction. Using small angle X-ray scattering (SAXS), the existence of the cGMP-mediated dimeric interface within the CNB domains was confirmed. Furthermore, measuring cGMP-binding affinities (EC50) of the dimeric interface mutants as well as determining activation constants (Ka) revealed that the interface formation is important for PKG activation. To conclude, this thesis study provides a new mechanistic insight in PKG activation along with a newly found interface that can be targeted for designing PKG-specific activity modulators.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
In this class, we will discuss metadata as well as current phenomena such as tagging and folksonomies. Readings: Ontologies Are Us: A Unified Model of Social Networks and Semantics, P. Mika, International Semantic Web Conference, 522-536, 2005. [Web link] Optional: Folksonomies: power to the people, E. Quintarelli, ISKO Italy-UniMIB Meeting, (2005)
Resumo:
The objective of the investigation who gave as result this work was to investigate the effectiveness of kinaesthetic motor imagery in the activation of the hemiplegic hand muscles following stroke. The experiment consisted of two random groups. Movements were measured after treatment. The participants were ten patients with hemiplegic hands (men who mean age was 74.4 years; mean time since stroke 3.05 months). All patients received three sessions of physical treatment based on an identical treatment protocol. Five patients were randomly assigned to an experimental group practising kinaesthetic motor imagery of a grasp using the 'lumbrical action' (experimental group). The others five (control group) followed a relaxation script. All the patients were then asked to grasp an object using the 'lumbrical action'. The grasps were recorded using an optoelectronic motion capture system. The magnitude of the extension of the index finger and the correlation of the angular displacement of the proximal phalangeal joints and the metacarpophalangeal joints were calculated. The movement time for the whole grip was calculated. The experimental group demonstrated higher extension in the index finger (p = < 0.01) and they had a higher correlation coefficient (0.99) than the control group (0.77) for the displacement of the proximal interphalangeal joint and the metacarpophalangeal joints. The movement time for the experimental group was faster, although the difference was not significant.
Resumo:
L'activació d'oxigen que té lloc en els éssers vius constitueix una font d'inspiració pel desenvolupament d'alternatives als oxidants tradicionals, considerats altament tòxics i nocius. En aquesta treball s'utilitzen compostos sintètics com a models del centre actiu de proteïnes dinuclears de coure i mononuclears de ferro de tipus no-hemo que participen en l'activació d'oxigen en els éssers vius. Els sistemes dinuclears de coure mostren un centre de tipus coure(III) bis(oxo) que és capaç de dur a terme l'ortho-hidroxilació de fenols de manera similar a la reacció que catalitza la proteïna tirosinasa. Per altra banda, els sistemes de ferro desenvolupats en aquest treball actuen com a models de les dioxigenases de Rieske i poden dur a terme l'hidroxilació estereoespecífica d'alcans i l'epoxidació i cis-dihidroxilació d'olefines utilitzant peròxid d'hidrogen com a agent oxidant. Tot plegat demostra que el desenvolupament de sistemes model constitueix una bona estratègia per l'estudi dels sistemes naturals.
Resumo:
Aquesta tesi és el reflex que de la cooperació entre grups experimentals i grups teòrics s'aconsegueix l'assoliment d'objectius inassolibles de forma individual. A partir de la DFT s'expliquen processos inorgànics i organometàl·lics de gran valor biològic i/o industrial. La tesi està enfocada especialment a l'estudi de complexos mononuclears i binuclears de coure, on té lloc l'activació d'enllaços C-H, C-C, i O-O. L'estudi de complexos octaèdrics de ruteni ha permès dur a terme extensos estudis isomèrics i racionalitzar les propietats espectroscòpiques dels mateixos. A més a més, estudis més puntuals respecte clusters de coure, l'estudi de la reacció de Pawson-Khand, l'estudi d'enllaços Pt-Pt en complexos trimèrics de platí, a més a més de l'estudi de la isomeria de complexos de Ni i Pt.
Resumo:
Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Resumo:
Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.