966 resultados para ab initio


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on theoretical arguments we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2S4. Our ab initio calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by Heyd-Scuseria-Ernzerhof screened hybrid functional calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use a combination of ab initio calculations and statistical mechanics to investigate the substitution of Li+ for Mg2+ in magnesium hydride (MgH2) accompanied by the formation of hydrogen vacancies with positive charge (with respect to the original ion at the site). We show that the binding energy between dopants and vacancy defects leads to a significant fraction of trapped vacancies and therefore a dramatic reduction in the number of free vacancies available for diffusion. The concentration of free vacancies initially increases with dopant concentration but reaches a maximum at around 1 mol % Li doping and slowly decreases with further doping. At the optimal level of doping, the corresponding concentration of free vacancies is much higher than the equilibrium concentrations of charged and neutral vacancies in pure MgH2 at typical hydrogen storage conditions. We also show that Li-doped MgH2 is thermodynamically metastable with respect to phase separation into pure magnesium and lithium hydrides at any significant Li concentration, even after considering the stabilization provided by dopant-vacancy interactions and configurational entropic effects. Our results suggest that lithium doping may enhance hydrogen diffusion hydride but only to a limited extent determined by an optimal dopant concentration and conditioned to the stability of the doped phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this EUDO CITIZENSHIP Forum Debate, several authors consider the interrelations between eligibility criteria for participation in independence referendum (that may result in the creation of a new independent state) and the determination of putative citizenship ab initio (on day one) of such a state. The kick-off contribution argues for resemblance of an independence referendum franchise and of the initial determination of the citizenry, critically appraising the incongruence between the franchise for the 18 September 2014 Scottish independence referendum, and the blueprint for Scottish citizenship ab initio put forward by the Scottish Government in its 'Scotland's Future' White Paper. Contributors to this debate come from divergent disciplines (law, political science, sociology, philosophy). They reflect on and contest the above claims, both generally and in relation to regional settings including (in addition to Scotland) Catalonia/Spain, Flanders/Belgium, Quebec/Canada, Post-Yugoslavia and Puerto-Rico/USA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5, and 8 μm obtained with the Infrared Array Camera on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, Hubble Space Telescope, and ground-based V, I, H, and Ks published observations, the range 0.5-10 μm can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the data set. Representative climate models were calculated by using a three-dimensional, pseudospectral general circulation model with idealized thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio-calculated, line list for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water, and other molecules. No clear evidence of carbon monoxide and carbon dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesized to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The state-resolved reaction probability of CH4 on Pt�110-�1�2 was measured as a function of CH4 translational energy for four vibrational eigenstates comprising different amounts of C-H stretch and bend excitation. Mode-specific reactivity is observed both between states from different polyads and between isoenergetic states belonging to the same polyad of CH4. For the stretch/bend combination states, the vibrational efficacy of reaction activation is observed to be higher than for either pure C-H stretching or pure bending states, demonstrating a concerted role of stretch and bend excitation in C-H bond scission. This concerted role, reflected by the nonadditivity of the vibrational efficacies, is consistent with transition state structures found by ab initio calculations and indicates that current dynamical models of CH4 chemisorption neglect an important degree of freedom by including only C-H stretching motion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The motion of adsorbate molecules across surfaces is fundamental to self-assembly, material growth, and heterogeneous catalysis. Recent Scanning Tunneling Microscopy studies have demonstrated the electron-induced long-range surface-migration of ethylene, benzene, and related molecules, moving tens of Angstroms across Si(100). We present a model of the previously unexplained long-range recoil of chemisorbed ethylene across the surface of silicon. The molecular dynamics reveal two key elements for directed long-range migration: first ‘ballistic’ motion that causes the molecule to leave the ab initio slab of the surface traveling 3–8 Å above it out of range of its roughness, and thereafter skipping-stone ‘bounces’ that transport it further to the observed long distances. Using a previously tested Impulsive Two-State model, we predict comparable long-range recoil of atomic chlorine following electron-induced dissociation of chlorophenyl chemisorbed at Cu(110)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400–1840 cm−1 and 3440–3970 cm−1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm−1 band) and 7% for self-broadening coefficients (3600 cm−1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm−1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4–5% for both intensities and half-widths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of the HSO(2) system in atmospheric and combustion chemistry has motivated several works dedicated to the study of associated structures and chemical reactions. Nevertheless controversy still exists in connection with the reaction SH + O(2) -> H + SO(2) and also related to the role of the HSOO isomers in the potential energy surface (PES). Here we report high-level ab initio calculation for the electronic ground state of the HSO(2) system. Energetic, geometric, and frequency properties for the major stationary states of the PES are reported at the same level of calculations:,CASPT2/aug-cc-pV(T+d)Z. This study introduces three new stationary points (two saddle points and one minimum). These structures allow the connection of the skewed HSOOs and the HSO(2) minima defining new reaction paths for SH + O(2) -> H + SO(2) and SH + O(2) -> OH + SO. In addition, the location of the HSOO isomers in the reaction pathways have been clarified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electronic polarization of the acetone molecule in the excited n -> pi* state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm (1). (c) 2010 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different hydrogen bonded clusters involving phenol and ethanol are studied theoretically using MP2/aug-cc-pVDZ. Nine different 1: 1 clusters are obtained and analyzed according to their stability and spectroscopic properties. Different isomeric forms of ethanol are considered. Attention is also devoted to the spectral shift of the characteristic pi -> pi* transition of phenol. Using TDHF, CIS, CIS(D) and TDB3LYP in aug-cc-pVDZ basis set, all results agree that a red shift is obtained when phenol is the hydrogen donor and a blue shift is obtained in the opposite case. These results are used to rationalize the red shift observed for phenol in liquid ethanol. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed analysis of the many-body contribution to the interaction energies of the gas-phase hydrogen-bonded glycine clusters, (Gly)(N), N = 1-4 is presented. The energetics of the hydrogen-bonded dimer, trimer and tetramer complexes have been analyzed using density-functional theory. The magnitude of the two-through four-body energy terms have been calculated and compared. The relaxation energy and the two-body energy terms are the principal contributors to the total binding energy. Four-body contribution is negligible. However, the three-body contribution is found to be sizable and the formation of the cyclic glycine trimer presents geometric strains that make it less favorable. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the V(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, U(15 N) Calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assuming the existence of a confined state of the electron in bulk water the polarizability of the hydrated electron is analyzed. Statistically uncorrelated supermolecular structures composed of seven water molecules (first solvation shell) with an extra electron were extracted from classical Monte Carlo simulation and used in quantum mechanical second-order Moller-Plesset calculations. It is found that the bound excess electron contributes with 274 a.u. to the total dipole polarizability of 345 a.u. for (H(2)O)(7)(-). From the calculated polarizabilities the Rayleigh elastic light scattering properties are inferred and found to considerably enhance activity and light depolarization. (C) 2009 Elsevier B.V. All rights reserved.