995 resultados para a-Si film
Resumo:
Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 degrees C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be similar to 0.5 eV and similar to 1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 degrees C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ge2Sb2Te5 (GST) films, one of the most suitable Chalcogenide alloys for Phase change Random Access Memory applications are studied for changes in sheet resistance, optical transmission, morphology and surface science by annealing at various transition temperatures. The crystallization leads to an increase of grain size and roughness in the films and the resistance changes to three orders of magnitude. Optical studies on GST films show distinct changes during phase transitions and the optical parameters are calculated. An increase of Tauc parameters B-1/2 indicates a reduction in disorder during phase transition. It is confirmed from XPS studies that Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases whereas Sb-Ge, Te-Te, Sb-Sb bonds are absent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]
Resumo:
Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d catalysts were synthesized by using a low-temperature sonochemical method and characterized by using XRD, TEM, XPS, FTIR, and BET surface analyzer. The catalytic activities of these compounds were investigated for the watergas shift reaction in the temperature range of 140-440 degrees C. The substitution of Si in Ce0.98Pt0.02O2-d increased the releasing capacity of lattice oxygen, whereas the substitution of Al decreased the reducibility of Ce0.98Pt0.02O2-d, as evidenced by hydrogen temperature-programmed reduction studies. However, both the catalysts showed a considerable improvement in terms of activity and stability compared to Ce0.98Pt0.02O2-d. The combined activity measurement and characterization results suggest that the increase in the oxygen vacancy, which acts as a dissociation center for water, is the primary reason for the improvement in the activity of modified Ce0.98Pt0.02O2-d. Both the catalysts are 100?% selective toward H2 production, and approximately 99?% conversion of CO to CO2 was observed at 260 and 270 degrees C for Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d, respectively. These catalysts do not deactivate during the daily startup/shutdown operations and are sustainable even after prolonged reaction. Notably, these catalysts do not require any pretreatment or activation during startup/shutdown operations.
Resumo:
Present trend of semi-solid processing is directed towards rheocasting route which allows manufacturing of near-net-shape cast components directly from the prepared semi-solid slurry. Generation of globular equi-axed grains during solidification of rheocast components, compared to the columnar dendritic structure of conventional casting routes, facilitates the manufacturing of components with improved mechanical properties and structural integrity. In the present investigation, a cooling slope has been designed and indigenously fabricated to produce semi solid slurry of Al-Si-Mg (A356) alloy and successively cast in a metallic mould. The scope of the present work discusses about development of a numerical model to simulate the liquid metal flow through cooling slope using Eulerian two-phase flow approach and to investigate the effect of pouring temperature on cooling slope semi-solid slurry generation process. The two phases considered in the present model are liquid metal and air. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling slope, following Schiel's equation. The continuity equation, momentum equation and energy equation are solved considering thin wall boundary condition approach. During solidification of the liquid metal, a modified temperature recovery scheme has been employed taking care of the latent heat release and change of fraction of liquid. The results obtained from simulations are compared with experimental findings and good agreement has been found.
Resumo:
Density-functional calculations are performed to explore the relationship between the work function and Young's modulus of RhSi, and to estimate the p-Schottky-barrier height (SBH) at the Si/RhSi(010) interface. It is shown that the Young's modulus and the workfunction of RhSi satisfy the generic sextic relation, proposed recently for elemental metals. The calculated p-SBH at the Si/RhSi interface is found to differ only by 0.04 eV in opposite limits, viz., no-pinning and strong pinning. We find that the p-SBH is reduced as much as by 0.28 eV due to vacancies at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761994]
Resumo:
Nano-indentation studies have been undertaken on bulk Ge15Te85-xSix glasses (0 <= x <= 9), to estimate hardness, H and elastic modulus, E. It is found that E and H increase initially with the increase in the atomic percent of Si. Further, a plateau is seen in the composition dependence of E and H in the composition range 2 <= x <= 6. It is also seen that the addition of up to 2 at% Si increases the density rho of the glass considerably; however, further additions of Si lead to a near linear reduction in rho, in the range 2 <= x <= 6. Beyond x=6, rho increases again with Si content. The variation of molar volume V-m brings out a more fascinating picture. A plateau is seen in the intermediate phase suggesting that the molecular structure of the glasses is adapting to keep the count of constraints fixed in this particular phase. The observed variations in mechanical properties are associated with the Boolchand's intermediate phase in the present glassy system, in the composition range 2 <= x <= 6, suggested earlier from calorimetric and electrical switching studies. The present results reveal rather directly the existence of the intermediate phase in elastic and plastic properties of chalcogenide glasses. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we report a significant improvement in mechanical and oxidation properties of near eutectic Nb-Si alloys by the addition of aluminum (Al) and control of microstructural length scale. A comparative study of two alloys Nb-18.79at%Si and Nb-12.3at%Si-9at%Al were carried out. The processing for microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mould. It is shown that addition of Al suppresses Nb3Si phase and promotes beta Nb5Si3 phase under nonequilibrium solidification condition. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloy. A detailed TEM study shows the presence of delta-Nb11Si4 phase in Nb matrix. The hardness of Nb solid solution can be increased as a consequence to a level observed in Nb3Si intermetallic due to the well oriented precipitates. Compression test yields the ultimate strength of 1.8 +/- 0.1 GPa and engineering strain of 2.3 +/- 0.03%. In comparison, the binary Nb-18.79 at% Si alloy possesses an ultimate strength of 1.35 +/- 0.1 GPa and strain of 0.2 +/- 0.01% when processed under identical conditions. The latter exhibits coarser microstructural length scale (300-400 nm) and a brittle behavior. The indentation fracture toughness of Al containing suction cast alloy shows a value of 20.2 +/- 0.5 MPa root m which represents a major improvement over bulk Nb-Si eutectic alloy. The detailed thermal studies confirm a multifold improvement in oxidation resistance up to 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The paper reports the effect of addition of small amount of Mg on the mechanical and oxidation properties of Nb-Nb3Si eutectic composites in Nb-Si system under the condition of suction casting. Mg addition increases the volume fraction of primary dendrites of Nb solid solution. This phase contains significant amount of strengthening precipitates. Two different precipitates are identified. The large plate shaped precipitates are that of hcp phase, while fine coherent precipitates have the structure similar to recently identified delta-Nb11Si2 phase. The Mg addition improves both the strength and ductility of the composite at room temperature (similar to 1.4 GPa and similar to 5% engineering strain) as well as at 700 degrees C(similar to 1.2 GPa and similar to 7% engineering strain). The presence of Mg results in a complex barrier layer which significantly increases the oxidation resistance up to a temperature of at least 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Field emission of reduced graphene oxide coated on polystyrene film is studied in both parallel and perpendicular configurations. Low turn-on field of 0.6 V/lm and high emission current density of 200 mA/cm(2) are observed in perpendicular configuration (along the cross section), whereas a turn-on field of 6 V/lm and current density of 20 mu A/cm(2) are obtained in parallel configuration (top surface). The emission characteristics follow Fowler-Nordheim (FN) tunneling and the values of enhancement factor estimated from FN plots are 5818 (perpendicular) and 741 (parallel). Furthermore, stability and repeatability of the field emission characteristics in perpendicular configuration are presented. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4788738]
Resumo:
This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.
Resumo:
The role of Bi layer (thickness similar to 7 nm) on As2S3 film was extensively studied for different optical applications in which Bi (top layer) as active and diffusing layer and As2S3 as barrier (matrix) layer. Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. The decrease of optical band gap with the addition of Bi to As2S3 has been explained on the basis of density of states and the increase in disorder in the system. It was found that the efficient changes of optical parameters (transmission, optical band gap, refraction) could be realized due to the photo induced diffusion activated by the focused 532 nm laser irradiation and formation of different bonds. The diffusion of Bi into As2S3 matrix increases the optical band gap producing photo bleaching effect. The changes were characterised by different experimental techniques. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.
Resumo:
The fracture of eutectic Si particles dictates the fracture characteristics of Al-Si based cast alloys. The morphology of these particles is found to play an important role in fracture initiation. In the current study, the effects of strain rate, temperature, strain, and heat treatment on Si particle fracture under compression were investigated. Strain rates ranging from 3 x 10(-4)/s to 10(2)/s and three temperatures RT, 373 K, and 473 K (100 A degrees C and 200 A degrees C) are considered in this study. It is found that the Si particle fracture shows a small increase with increase in strain rate and decreases with increase in temperature at 10 pct strain. The flow stress at 10 pct strain exhibits the trend similar to particle fracture with strain rate and temperature. Particle fracture also increases with increase in strain. Large and elongated particles show a greater tendency for cracking. Most fracture occurs on particles oriented nearly perpendicular to the loading axis, and the cracks are found to occur almost parallel to the loading axis. At any strain rate, temperature, and strain, the Si particle fracture is greater for the heat-treated condition than for the non-heat-treated condition because of higher flow stress in the heat-treated condition. In addition to Si particle fracture, elongated Fe-rich intermetallic particles are also seen to fracture. These particles have specific crystallographic orientations and fracture along their major axis with the cleavage planes for their fracture being (100). Fracture of these particles might also play a role in the overall fracture behavior of this alloy since these particles cleave along their major axis leading to cracks longer than 200 mu m.