942 resultados para X-rays: binaries


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observations of magnetars and some of the high magnetic field pulsars have shown that their thermal luminosity is systematically higher than that of classical radio-pulsars, thus confirming the idea that magnetic fields are involved in their X-ray emission. Here we present the results of 2D simulations of the fully coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term. After gathering and thoroughly re-analysing in a consistent way all the best available data on isolated, thermally emitting neutron stars, we compare our theoretical models to a data sample of 40 sources. We find that our evolutionary models can explain the phenomenological diversity of magnetars, high-B radio-pulsars, and isolated nearby neutron stars by only varying their initial magnetic field, mass and envelope composition. Nearly all sources appear to follow the expectations of the standard theoretical models. Finally, we discuss the expected outburst rates and the evolutionary links between different classes. Our results constitute a major step towards the grand unification of the isolated neutron star zoo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A∗. Young, massive stars within 0.5 pc of Sgr A∗ are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A∗’s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4±0.3 arcsec from Sgr A∗, and refine the source spin period and its derivative (P = 3.7635537(2) s and ˙ P = 6.61(4) × 10−12 s s−1), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm−3, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07–2 pc from Sgr A∗. Simulations of its possible motion around Sgr A∗ show that it is likely (∼90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the long-term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3–1606 (SGR 1822–1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3–1606's radio-pulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative P = 8.3(2)×10−14 s s−1, which implies an inferred dipolar surface magnetic field of B sime 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3–1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3–1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and B tor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The availability of a large amount of observational data recently collected from magnetar outbursts is now calling for a complete theoretical study of outburst characteristics. In this Letter (the first of a series dedicated to modeling magnetar outbursts), we tackle the long-standing open issue of whether or not short bursts and glitches are always connected to long-term radiative outbursts. We show that the recent detection of short bursts and glitches seemingly unconnected to outbursts is only misleading our understanding of these events. We show that, in the framework of the starquake model, neutrino emission processes in the magnetar crust limit the temperature, and therefore the luminosity. This natural limit to the maximum luminosity makes outbursts associated with bright persistent magnetars barely detectable. These events are simply seen as a small luminosity increase over the already bright quiescent state, followed by a fast return to quiescence. In particular, this is the case for 1RXS J1708–4009, 1E 1841–045, SGR 1806–20, and other bright persistent magnetars. On the other hand, a similar event (with the same energetics) in a fainter source will drive a more extreme luminosity variation and longer cooling time, as for sources such as XTE J1810–197, 1E 1547–5408, and SGR 1627–41. We conclude that the non-detection of large radiative outbursts in connection with glitches and bursts from bright persistent magnetars is not surprising per se, nor does it need any revision of the glitches and burst mechanisms as explained by current theoretical models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the outburst of the newly discovered X-ray transient 3XMMJ185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of ˙ P <1.4×10−13 s s−1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of Bdip < 4.1×1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third “low-B” magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3−1606. We have also obtained an upper limit to the quiescent luminosity (<4×1033 erg s−1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars1, 2, 3 (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions2, 3, 4. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification6 and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe ii profiles from the equatorial disk, and a refined Be classification (to that of a B1.5–B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10−7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the quiescent state of the soft gamma repeater SGR 0501+4516 observed by XMM–Newton on 2009 August 30. The source exhibits an absorbed flux ∼75 times lower than that measured at the peak of the 2008 outburst, and a rather soft spectrum, with the same value of the blackbody temperature observed with ROSAT back in 1992. This new observation is put into the context of all existing X-ray data since its discovery in 2008 August, allowing us to complete the study of the timing and spectral evolution of the source from outburst until its quiescent state. The set of deep XMM–Newton observations performed during the few years time-scale of its outburst allows us to monitor the spectral characteristics of this magnetar as a function of its rotational period, and their evolution along these years. After the first ∼10 d, the initially hot and bright surface spot progressively cooled down during the decay. We discuss the behaviour of this magnetar in the context of its simulated secular evolution, inferring a plausible dipolar field at birth of 3 × 1014 G, and a current (magnetothermal) age of ∼10 kyr.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a long-term phase-coherent timing analysis and pulse-phase resolved spectroscopy for the two outbursts observed from the transient anomalous X-ray pulsar CXOU J164710.2−455216. For the first outburst we used 11 Chandra and XMM–Newton observations between 2006 September and 2009 August, the longest baseline yet for this source. We obtain a coherent timing solution with P = 10.61065583(4) s, Ṗ = 9.72(1) × 10−13 s s−1 and P̈ = –1.05(5) × 10−20 s s−2. Under the standard assumptions this implies a surface dipolar magnetic field of ∼1014 G, confirming this source as a standard B magnetar. We also study the evolution of the pulse profile (shape, intensity and pulsed fraction) as a function of time and energy. Using the phase-coherent timing solution we perform a phase-resolved spectroscopy analysis, following the spectral evolution of pulse-phase features, which hints at the physical processes taking place on the star. The results are discussed from the perspective of magnetothermal evolution models and the untwisting magnetosphere model. Finally, we present similar analysis for the second, less intense, 2011 outburst. For the timing analysis we used Swift data together with 2 XMM–Newton and Chandra pointings. The results inferred for both outbursts are compared and briefly discussed in a more general framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, magnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here, we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious ‘spectral line’ is required at a high significance level in order to obtain statistically acceptable fits, with central energy and equivalent width similar to the values typically observed. We also perform a fit to a specific object, RX J0806.4−4123, finding several surface temperature distributions able to model the observed spectrum. The explored effect is unlikely to work in all sources with detected lines, but in some cases it can indeed be responsible for the appearance of such lines. Our results enforce the idea that surface temperature anisotropy can be an important factor that should be considered and explored also in combination with more sophisticated emission models like atmospheres.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We revisit the population synthesis of isolated radio-pulsars incorporating recent advances on the evolution of the magnetic field and the angle between the magnetic and rotational axes from new simulations of the magneto-thermal evolution and magnetosphere models, respectively. An interesting novelty in our approach is that we do not assume the existence of a death line. We discuss regions in parameter space that are more consistent with the observational data. In particular, we find that any broad distribution of birth spin periods with P0 ≲ 0.5 s can fit the data, and that if the alignment angle is allowed to vary consistently with the torque model, realistic magnetospheric models are favoured compared to models with classical magneto-dipolar radiation losses. Assuming that the initial magnetic field is given by a lognormal distribution, our optimal model has mean strength 〈log B0[G]〉 ≈ 13.0–13.2 with width σ(log B0) = 0.6–0.7. However, there are strong correlations between parameters. This degeneracy in the parameter space can be broken by an independent estimate of the pulsar birth rate or by future studies correlating this information with the population in other observational bands (X-rays and γ-rays).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic field strength at birth is arguably one of the most important properties to determine the evolutionary path of a neutron star. Objects with very high fields, collectively known as magnetars, are characterized by high X-ray quiescent luminosities, occurrence of outbursts, and, for some of them, sporadic giant flares. While the magnetic field strength is believed to drive their collective behaviour, however, the diversity of their properties, and, especially, the observation of magnetar-like bursts from “low-field” pulsars, has been a theoretical puzzle. In this review, we discuss results of long-term simulations following the coupled evolution of the X-ray luminosity and the timing properties for a large, homogeneous sample of X-ray emitting isolated neutron stars, accounting for a range of initial magnetic field strengths, envelope compositions, and neutron star masses. In addition, by following the evolution of magnetic stresses within the neutron star crust, we can also relate the observed magnetar phenomenology to the physical properties of neutron stars, and in particular to their age and magnetic field strength and topology. The dichotomy of “high-B” field pulsars versus magnetars is naturally explained, and occasional outbursts from old, low B-field neutron stars are predicted. We conclude by speculating on the fate of old magnetars, and by presenting observational diagnostics of the neutron star crustal field topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. None the less, the modelling allows us to place constraints on the system geometry (i.e. the angles ψ and ξ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to 65° ≲ ψ + ξ ≲ 125° or 235° ≲ ψ + ξ ≲ 295°; (b) the temperature contrast between the poles and the equator must be at least a factor of ∼6, and (c) the size of the hottest region ranges between 0.2 and 0.7 km (including uncertainties on the source distance). Lastly, we interpret our findings within the context of internal and external heating models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3−1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ∼500 d since the discovery of SWIFT J1822.3−1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (∼3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between 2014 July and 2015 March with Chandra and XMM–Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24 s. The magnetar is slowing down at a rate of P˙=1.43(1)×10−11 s s−1 and with a decreasing trend due to a negative P¨ of −3.5(7) × 10−19 s s−2. This implies a surface dipolar magnetic field strength of ∼2.2 × 1014 G, a characteristic age of about 3.6 kyr and a spin-down luminosity Lsd ∼1.7 × 1034 erg s−1. The source spectrum is well modelled by a blackbody with temperature of about 500 eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25 per cent during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1 arcsec up to at least 1 arcmin around SGR J1935+2154 both in Chandra and XMM–Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016