902 resultados para Wind power industry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By far the most important, difficult and complex policy issue to resolve in the context of the extractive industry concerns the accounting for preproduction costs and mineral reserves, and the disclosure of relevant supplementary data about them. The accounting profession has been unable to settle this particular issue, except in the most contrived of senses. Indeed, many consider the issue to be unresolvable. This paper focuses on the primary financial statements and proposes a partial solution to the issue. The Proposed Method describes a set of new procedures and primary financial statements that are intended to be more serviceable and possess greater predictive power than is currently the case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pharmaceutical Industry presents one of India’s most successful stories of economic expansion and improvements in public health. Indian firms have made access to quality medicines possible and affordable in many developing countries. Indian pharmaceuticals are also exported on a large scale to the United States and other highly regulated markets. A wave of mergers, acquisitions and tie-ups point to growing integration between Indian firms and global pharma multinationals.

The Politics of the Pharmaceutical Industry and Access to Medicines: World Pharmacy and India examines this important industry from different economic, social and political perspectives. Topics covered include the implications of TRIPS-compliant intellectual property rights, the role of flexibilities under TRIPS, the market regulation system, the role of Indian firms in exporting HIV/AIDS medications to Africa, the issue of free trade agreements, the power and reach of foreign pharmaceutical multinationals in India’s domestic market, and the sustainability of India as a major generics supplier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy is one of the most promising renewable energy sources due to its availability and climate-friendly attributes. Large-scale integration of wind energy sources creates potential technical challenges due to the intermittent nature that needs to be investigated and mitigated as part of developing a sustainable power system for the future. Therefore, this study developed simulation models to investigate the potential challenges, in particular voltage fluctuations, zone substation, and distribution transformer loading, power flow characteristics, and harmonic emissions with the integration of wind energy into both the high voltage (HV) and low voltage (LV) distribution network (DN). From model analysis, it has been clearly indicated that influences of these problems increase with the increased integration of wind energy into both the high voltage and low voltage distribution network, however, the level of adverse impacts is higher in the LV DN compared to the HV DN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an effective VAR planning based on reactive power margin for the enhancement of dynamic voltage stability in distribution networks with distributed wind generation. The analysis is carried over a distribution test system representative of the Kumamoto area in Japan. The detailed mathematical modeling of the system is also presented. Firstly, this paper provides simulation results showing the effects of composite load on voltage dynamics in the distribution network through an accurate time-domain analysis. Then, a cost-effective combination of shunt capacitor bank and distribution static synchronous compensator (D-STATCOM) is selected to ensure fast voltage recovery after a sudden disturbance. The analysis shows that the proposed approach can reduce the size of compensating devices, which in turn, reduces the cost. It also reduces power loss of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents potential barriers to integrate the squirrel cage induction generator (SCIG) and doubly fed induction generator (DFIG) type wind turbine in distribution networks. The analysis is carried out over a 16 bus distribution test system. Both static and dynamic analyses are performed to see the impact of two different generators on the distribution system. The simulation results show that both SCIG and DFIG type wind turbines have significant impact on the static voltage stability, power loss, and dynamic behavior of the system, which should be taken into account to improve systems performance before integrating wind generation in existing distribution networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the oscillatory behavior of power distribution systems in the presence of distributed generation. The analysis is carried out over a distribution test system with two doubly fed induction type wind generators and different types of induction motor loads. The system is linearized by the perturbation method. Eigenvalues are calculated to see the modal interaction within the system. The study indicates that interactions between closely placed converter controllers and induction motor loads significantly influence the damping of the oscillatory modes of the system. The critical modes have a frequency of oscillation between the electromechanical and subsynchronous oscillations of power systems. Time-domain simulations are carried out to verify the validity of the modal analysis and to provide a physical feel for the types of oscillations that occur in distribution systems. Finally, significant parameters of the system that affect the damping and frequency of the oscillation are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a decentralised controller design for doubly-fed induction generators (DFIGs) to enhance dynamic performance of distribution networks. The change in the output power due to the variable nature of wind is considered as an uncertain term in the design algorithm. In addition, the interconnection effect of the other subsystems are considered in the design process. The H norm of the uncertain system is found out and simultaneous output-feedback linear controllers are designed based controller is verified on a 16 bus distribution test system for severe disturbances. Simulation results indicate that the designed controller is robust against uncertainties in operating conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining reliability and stability of a power systems in transmission and distribution level becomes a big challenge in present scenario. Grid operators are always responsible to maintain equilibrium between available power generation and demand of end users. Maintaining grid balance is a bigger issue, in case of any unexpected generation shortage or grid disturbance or integration of any renewable energy sources like wind and solar power in the energy mix. In order to compensate such imbalance and to facilitate more renewable energy sources with the grid, energy storage system (ESS) started to be playing an important role with the advancement of the state of the art technology. ESS can also help to get reduction in greenhouse gas (GHG) emission by means of integrating more renewable energy sources to the grid. There are various types of Energy Storage (ES) technologies which are being used in power systems network from large scale (above 50MW) to small scale (up to 100KW). Based on the characteristics, each storage technology has their own merits and demerits. This paper carried out extensive review study and verifies merits and demerits of each storage technology and identifies the suitable technology for the future. This paper also has conducted feasibility study with the aid of E-SelectTM tool for various ES technologies in applications point of view at different grid locations. This review study helps to evaluate feasible ES technology for a particular electrical application and also helps to develop smart hybrid storage system for grid applications in efficient way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenal growth in economy experienced in developed countries throughout the 20th century has largely been driven by the availability of conventional energy sources for electricity generation. However, increased concern about fossil fuels and adverse effect of carbon dioxide emission in to atmosphere changed the conventional power system to a viable one by integrating renewable energy sources into the existing system. Among the Renewable Energy (RE) sources, wind energy is one of the fastest growing technologies in reducing the Green House Gas (GHG) emissions in to the atmosphere due to its continuous availability throughout a period. Hence, this paper discusses the performance of a wind-grid connected system in a semi-arid region by conducting a case study. Wilson promontory, one of the best locations for wind generation in Victoria is considered as a case study. Hybrid Optimization Model for Electric Renewable (HOMER) is used as a simulating tool for this analysis. This study also presents the influences of storage system in the proposed Hybrid Power System (HPS) allowing energy to be stored during higher generations or lower load demands. In addition this paper also discusses the major integration issues to facilitate the large scale wind energy into the grid for reliable power generation and distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewick's swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern Russia in 1996. During the 82 occasions where a swan's location was recorded in flight, average flight altitude was 165 m a.s.1. with a maximum of 759 m a.s.1., despite winds often being more favourable at higher altitudes. We also counted Bewick's swans departing from the Gulf of Finland and subsequently passing an observatory in the next major stop-over area 800 km further north in the White Sea, northern Russia, during the springs of 1994, 1995 and 1996. A comparison of these counts with wind data provided evidence for Bewick's swans using favourable changes in wind conditions to embark on migration. Changes in the numbers of birds arriving in the White Sea correlated best with favourable changes in winds in the Gulf of Finland 1 day earlier. Again, migratory volume showed a correlation with winds at low altitudes only, despite wind conditions for the swans being more favourable at high altitudes. We conclude that the relatively large Bewick's swan tends to gear its migration to wind conditions at low altitude only. We argue that Bewick's swans do not climb to high altitudes because of mechanical and physiological limitations with respect to the generation of power for flight and to avoid rapid dehydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between mass loss rate and chemical power in flying birds is analysed with regard to water and heat balance. Two models are presented: the first model is applicable to situations where heat loads are moderate. i.e. when heat balance can be achieved by regulating non-evaporative heat loss, and evaporative water loss is minimised. The second model is applicable when heat loads are high, non-evaporative heat loss is maximised. and heat balance has to be achieved by regulating evaporative heat loss. The rates of mass loss of two Thrush Nightingales Luscinia luscinia and one Teal Anas crecca were measured at various flight speeds in a wind tunnel. Estimates of metabolic water production indicate that the Thrush Nightingales did not dehydrate during experimental flights. Probably, the Thrush Nightingales maintained heat balance without actively increasing evaporative cooling. The Teal, however, most likely had to resort to evaporative cooling, although it may not have dehydrated. Chemical power was estimated from our mass loss rate data using the minimum evaporation model for the Thrush Nightingales and the evaporative heat regulation model for the Teal. For both Thrush Nightingales and the Teal, the chemical power calculated from our mass loss rate data showed a greater change with speed (more 'U-shaped' curve) than the theoretically predicted chemical power curves based on aerodynamic theory. The minimum power speeds calculated from our data differed little from theoretical predictions but maximum range speeds were drastically different. Mass loss rate could potentially be used to estimate chemical power in flying birds under laboratory conditions where temperature and humidity are controlled. However, the assumptions made in the models and the model predictions need further testing.