926 resultados para Willard, Eugene S.
Resumo:
Consistent with a negativity bias account, neuroscientific and behavioral evidence demonstrates modulation of even early sensory processes by unpleasant, potentially threat-relevant information. The aim of this research is to assess the extent to which pleasant and unpleasant visual stimuli presented extrafoveally capture attention and impact eye movement control. We report an experiment examining deviations in saccade metrics in the presence of emotional image distractors that are close to a nonemotional target. We additionally manipulate the saccade latency to test when the emotional distractor has its biggest impact on oculomotor control. The results demonstrate that saccade landing position was pulled toward unpleasant distractors, and that this pull was due to the quick saccade responses. Overall, these findings support a negativity bias account of early attentional control and call for the need to consider the time course of motivated attention when affect is implicit
Resumo:
This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change. High latitudes are characterized by large annual changes in solar input. Albedo decreases strongly from winter, when the surface is snow-covered, to summer, especially in nonforested regions such as Arctic tundra and boreal wetlands. Evapotranspiration (QE) of high-latitude ecosystems is less than from a freely evaporating surface and decreases late in the season, when soil moisture declines, indicating stomatal control over QE, particularly in evergreen forests. Evergreen conifer forests have a canopy conductance half that of deciduous forests and consequently lower QE and higher sensible heat flux (QH). There is a broad overlap in energy partitioning between Arctic and boreal ecosystems, although Arctic ecosystems and light taiga generally have higher ground heat flux because there is less leaf and stem area to shade the ground surface, and the thermal gradient from the surface to permafrost is steeper. Permafrost creates a strong heat sink in summer that reduces surface temperature and therefore heat flux to the atmosphere. Loss of permafrost would therefore amplify climatic warming. If warming caused an increase in productivity and leaf area, or fire caused a shift from evergreen to deciduous forest, this would increase QE and reduce QH. Potential future shifts in vegetation would have varying climate feedbacks, with largest effects caused by shifts from boreal conifer to shrubland or deciduous forest (or vice versa) and from Arctic coastal to wet tundra. An increase of logging activity in the boreal forests appears to reduce QE by roughly 50% with little change in QH, while the ground heat flux is strongly enhanced.
Resumo:
Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections
Resumo:
The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability.
Resumo:
Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate.
Resumo:
Decision strategies in multi-attribute Choice Experiments are investigated using eye-tracking. The visual attention towards, and attendance of, attributes is examined. Stated attendance is found to diverge substantively from visual attendance of attributes. However, stated and visual attendance are shown to be informative, non-overlapping sources of information about respondent utility functions when incorporated into model estimation. Eye-tracking also reveals systematic nonattendance of attributes only by a minority of respondents. Most respondents visually attend most attributes most of the time. We find no compelling evidence that the level of attention is related to respondent certainty, or that higher or lower value attributes receive more or less attention
Resumo:
The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.
Resumo:
It has been suggested that the evidence used to support a decision to move our eyes and the confidence we have in that decision are derived from a common source. Alternatively, confidence may be based on further post-decisional processes. In three experiments we examined this. In Experiment 1, participants chose between two targets on the basis of varying levels of evidence (i.e., the direction of motion coherence in a Random-Dot-Kinematogram). They indicated this choice by making a saccade to one of two targets and then indicated their confidence. Saccade trajectory deviation was taken as a measure of the inhibition of the non-selected target. We found that as evidence increased so did confidence and deviations of saccade trajectory away from the non-selected target. However, a correlational analysis suggested they were not related. In Experiment 2 an option to opt-out of the choice was offered on some trials if choice proved too difficult. In this way we isolated trials on which confidence in target selection was high (i.e., when the option to opt-out was available but not taken). Again saccade trajectory deviations were found not to differ in relation to confidence. In Experiment 3 we directly manipulated confidence, such that participants had high or low task confidence. They showed no differences in saccade trajectory deviations. These results support post-decisional accounts of confidence: evidence supporting the decision to move the eyes is reflected in saccade control, but the confidence that we have in that choice is subject to further post-decisional processes.
Resumo:
It has long been known that the path (trajectory) taken by the eye to land on a target is rarely straight (Yarbus, 1967). Furthermore, the magnitude and direction of this natural tendency for curvature can be modulated by the presence of a competing distractor stimu lus presented along with the saccade target. The distractorrelated modulation of saccade trajectories provides a subtle measure of the underlying competitive processes involved in saccade target selection. Here we review some of our own studies into the effects distract ors have on saccade trajectories, which can be regarded as a way of probing the competit ive balance between target and distractor salience.
Resumo:
In this book chapter, we focus on the basic questions on dynamics of entangled polymers that faced the earliest researchers, and see how their answers stand up in light of what has been learned in the last 40 years. In the process, we hope to provide the novice with a basic understanding of the physical concepts without burdening the reader with the mathematics, or with detailed data that can easily be found in the books referred to above. At the same time, we hope to update the knowledgeable non-specialist with the latest developments in the area. For the expert, we hope to provoke new ways of thinking about an old, but incompletely solved, problem area.
Resumo:
The most popular endgame tables (EGTs) documenting ‘DTM’ Depth to Mate in chess endgames are those of Eugene Nalimov but these do not recognise the FIDE 50-move rule ‘50mr’. This paper marks the creation by the first author of EGTs for sub-6-man (s6m) chess and beyond which give DTM as affected by the ply count pc. The results are put into the context of previous work recognising the 50mr and are compared with the original unmoderated DTM results. The work is also notable for being the first EGT generation work to use the functional programming language HASKELL.
Resumo:
Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η =
Resumo:
Arousing stimuli, either threat-related or pleasant, may be selected for priority at different stages within the processing stream. Here we examine the pattern of processing for non-task-relevant threatening (spiders: arousing to some) and pleasant stimuli (babies or chocolate: arousing to all) by recording the gaze of a spider Fearful and Non-fearful group while they performed a simple “follow the cross” task. There was no difference in first saccade latencies. Saccade trajectories showed a general hypervigilance for all stimuli in the Fearful group. Saccade landing positions corresponded to what each group would find arousing, such that the Fearful group deviated towards both types of images whereas the Non-fearful group deviated towards pleasant images. Secondary corrective saccade latencies away from threat-related stimuli were longer for the Fearful group (difficulty in disengaging) compared with the Non-fearful group. These results suggest that attentional biases towards arousing stimuli may occur at different processing stages.
Resumo:
Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions - maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.
Resumo:
One of the most significant sources of greenhouse gas (GHG) emissions in Canada is the buildings sector, with over 30% of national energy end-use occurring in buildings. Energy use must be addressed to reduce emissions from the buildings sector, as nearly 70% of all Canada’s energy used in the residential sector comes from fossil sources. An analysis of GHG emissions from the existing residential building stock for the year 2010 has been conducted for six Canadian cities with different climates and development histories: Vancouver, Edmonton, Winnipeg, Toronto, Montreal, and Halifax. Variation across these cities is seen in their 2010 GHG emissions, due to climate, characteristics of the building stock, and energy conversion technologies, with Halifax having the highest per capita emissions at 5.55 tCO2e/capita and Montreal having the lowest at 0.32 tCO2e/capita. The importance of the provincial electricity grid’s carbon intensity is emphasized, along with era of construction, occupancy, floor area, and climate. Approaches to achieving deep emissions reductions include innovative retrofit financing and city level residential energy conservation by-laws; each region should seek location-appropriate measures to reduce energy demand within its residential housing stock, as well as associated GHG emissions.