999 resultados para White, Albert Easton, 1884-1956
Resumo:
Visceral leishmaniasis (VL) has been known to occur since the 1980s on the western bank of the White Nile River (Central Sudan), 150 km south of Khartoum, and has resulted in high mortality. The most recent outbreak of the disease in this area began in 2006. Entomological surveys were carried out during May 2008, June 2010 and May and July 2011 in the White Nile area. Sandflies were collected using Centers for Disease Control light traps and sticky oil traps in the village of Kadaba and the nearby woodland. Phlebotomus females were dissected for the presence of Leishmania promastigotes. A total of 17,387 sandflies, including six species of Phlebotomus and 10 species of Sergentomyia, were identified. The Phlebotomus species recorded were Phlebotomus orientalis, Phlebotomus papatasi, Phlebotomus bergeroti, Phlebotomus duboscqi, Phlebotomus rodhaini and Phlebotomus saevus. P. orientalis was collected in both habitats. The relative abundance of P. orientalis in the woodland habitat was higher than that recorded in the village habitat. In the woodland habitat, there was a notable increase in the relative abundance of P. orientalis during the surveys conducted in 2008 and 2010 compared to 2011. None of the 311 P. orientalis females dissected were infected with Leishmania promastigotes, although relatively high parous rates were recorded in both habitats. Based on the distribution of P. orientalis recorded in this study, this species is the most likely vector of VL in the endemic focus in the White Nile area. Further investigation is required to elucidate the seasonal abundance and distribution of the vector, as well as the transmission season of VL in both habitats so that appropriate control strategies for the vector can be designed.
Resumo:
Référence bibliographique : Rol, 55238
Resumo:
Référence bibliographique : Rol, 55237
Resumo:
Triatoma brasiliensis macromelasoma is revalidated based on the results of previous multidisciplinary studies on the Triatoma brasiliensis complex, consisting of crossing experiments and morphological, biological, ecological and molecular analyses. These taxonomic tools showed the closest relationship between T. b. macromelasoma and Triatoma brasiliensis brasiliensis. T. b. macromelasoma is redescribed based on specimens collected in the type locality and specimens from a F1 colony. The complex now comprises T. b. brasiliensis, T. b. macromelasoma, Triatoma melanica, Triatoma juazeirensis and Triatoma sherlocki. An identification key for all members of the complex is presented. This detailed comparative study of the morphological features of T. b. macromelasoma and the remaining members of the complex corroborates results from multidisciplinary analyses, suggesting that the subspecific status is applicable. This subspecies can be distinguished by the following combination of features: a pronotum with 1+1 narrow brownish-yellow stripes on the submedian carinae, not attaining its apex, hemelytra with membrane cells darkened on the central portion and legs with an incomplete brownish-yellow ring on the apical half of the femora. Because the T. brasiliensis complex is of distinct epidemiological importance throughout its geographic distribution, a precise identification of its five members is important for monitoring and controlling actions against Chagas disease transmission.
Resumo:
β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity.
Resumo:
Donateur : Fouqué, Ferdinand (1828-1904)
Resumo:
Donateur : Clermont, Raoul de (18..-19..?)
Resumo:
Référence bibliographique : Rol, 56906
Resumo:
Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
Resumo:
Y chromosome variation is determined by several confounding factors including mutation rate, effective population size, demography, and selection. Disentangling these factors is essential to better understand the evolutionary properties of the Y chromosome. We analyzed genetic variation on the Y chromosome, X chromosome, and mtDNA of the greater white-toothed shrew, a species with low variance in male reproductive success and limited sex-biased dispersal, which enables us to control to some extent for life-history effects. We also compared ancestral (Moroccan) to derived (European) populations to investigate the role of demographic history in determining Y variation. Recent colonization of Europe by a small number of founders (combined with low mutation rates) is largely responsible for low diversity observed on the European Y and X chromosomes compared to mtDNA. After accounting for mutation rate, copy number, and demography, the Y chromosome still displays a deficit in variation relative to the X in both populations. This is possibly influenced by directional selection, but the slightly higher variance in male reproductive success is also likely to play a role, even though the difference is small compared to that in highly polygynous species. This study illustrates that demography and life-history effects should be scrutinized before inferring strong selective pressure as a reason for low diversity on the Y chromosome.
Resumo:
Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.