905 resultados para Web Mining, Data Mining, User Topic Model, Web User Profiles
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
When constructing and using environmental models, it is typical that many of the inputs to the models will not be known perfectly. In some cases, it will be possible to make observations, or occasionally physics-based uncertainty propagation, to ascertain the uncertainty on these inputs. However, such observations are often either not available or even possible, and another approach to characterising the uncertainty on the inputs must be sought. Even when observations are available, if the analysis is being carried out within a Bayesian framework then prior distributions will have to be specified. One option for gathering or at least estimating this information is to employ expert elicitation. Expert elicitation is well studied within statistics and psychology and involves the assessment of the beliefs of a group of experts about an uncertain quantity, (for example an input / parameter within a model), typically in terms of obtaining a probability distribution. One of the challenges in expert elicitation is to minimise the biases that might enter into the judgements made by the individual experts, and then to come to a consensus decision within the group of experts. Effort is made in the elicitation exercise to prevent biases clouding the judgements through well-devised questioning schemes. It is also important that, when reaching a consensus, the experts are exposed to the knowledge of the others in the group. Within the FP7 UncertWeb project (http://www.uncertweb.org/), there is a requirement to build a Webbased tool for expert elicitation. In this paper, we discuss some of the issues of building a Web-based elicitation system - both the technological aspects and the statistical and scientific issues. In particular, we demonstrate two tools: a Web-based system for the elicitation of continuous random variables and a system designed to elicit uncertainty about categorical random variables in the setting of landcover classification uncertainty. The first of these examples is a generic tool developed to elicit uncertainty about univariate continuous random variables. It is designed to be used within an application context and extends the existing SHELF method, adding a web interface and access to metadata. The tool is developed so that it can be readily integrated with environmental models exposed as web services. The second example was developed for the TREES-3 initiative which monitors tropical landcover change through ground-truthing at confluence points. It allows experts to validate the accuracy of automated landcover classifications using site-specific imagery and local knowledge. Experts may provide uncertainty information at various levels: from a general rating of their confidence in a site validation to a numerical ranking of the possible landcover types within a segment. A key challenge in the web based setting is the design of the user interface and the method of interacting between the problem owner and the problem experts. We show the workflow of the elicitation tool, and show how we can represent the final elicited distributions and confusion matrices using UncertML, ready for integration into uncertainty enabled workflows.We also show how the metadata associated with the elicitation exercise is captured and can be referenced from the elicited result, providing crucial lineage information and thus traceability in the decision making process.
Resumo:
Component-based development (CBD) has become an important emerging topic in the software engineering field. It promises long-sought-after benefits such as increased software reuse, reduced development time to market and, hence, reduced software production cost. Despite the huge potential, the lack of reasoning support and development environment of component modeling and verification may hinder its development. Methods and tools that can support component model analysis are highly appreciated by industry. Such a tool support should be fully automated as well as efficient. At the same time, the reasoning tool should scale up well as it may need to handle hundreds or even thousands of components that a modern software system may have. Furthermore, a distributed environment that can effectively manage and compose components is also desirable. In this paper, we present an approach to the modeling and verification of a newly proposed component model using Semantic Web languages and their reasoning tools. We use the Web Ontology Language and the Semantic Web Rule Language to precisely capture the inter-relationships and constraints among the entities in a component model. Semantic Web reasoning tools are deployed to perform automated analysis support of the component models. Moreover, we also proposed a service-oriented architecture (SOA)-based semantic web environment for CBD. The adoption of Semantic Web services and SOA make our component environment more reusable, scalable, dynamic and adaptive.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
This thesis provides a set of tools for managing uncertainty in Web-based models and workflows.To support the use of these tools, this thesis firstly provides a framework for exposing models through Web services. An introduction to uncertainty management, Web service interfaces,and workflow standards and technologies is given, with a particular focus on the geospatial domain.An existing specification for exposing geospatial models and processes, theWeb Processing Service (WPS), is critically reviewed. A processing service framework is presented as a solutionto usability issues with the WPS standard. The framework implements support for Simple ObjectAccess Protocol (SOAP), Web Service Description Language (WSDL) and JavaScript Object Notation (JSON), allowing models to be consumed by a variety of tools and software. Strategies for communicating with models from Web service interfaces are discussed, demonstrating the difficultly of exposing existing models on the Web. This thesis then reviews existing mechanisms for uncertainty management, with an emphasis on emulator methods for building efficient statistical surrogate models. A tool is developed to solve accessibility issues with such methods, by providing a Web-based user interface and backend to ease the process of building and integrating emulators. These tools, plus the processing service framework, are applied to a real case study as part of the UncertWeb project. The usability of the framework is proved with the implementation of aWeb-based workflow for predicting future crop yields in the UK, also demonstrating the abilities of the tools for emulator building and integration. Future directions for the development of the tools are discussed.
Resumo:
Learning user interests from online social networks helps to better understand user behaviors and provides useful guidance to design user-centric applications. Apart from analyzing users' online content, it is also important to consider users' social connections in the social Web. Graph regularization methods have been widely used in various text mining tasks, which can leverage the graph structure information extracted from data. Previously, graph regularization methods operate under the cluster assumption that nearby nodes are more similar and nodes on the same structure (typically referred to as a cluster or a manifold) are likely to be similar. We argue that learning user interests from complex, sparse, and dynamic social networks should be based on the link structure assumption under which node similarities are evaluated based on the local link structures instead of explicit links between two nodes. We propose a regularization framework based on the relation bipartite graph, which can be constructed from any type of relations. Using Twitter as our case study, we evaluate our proposed framework from social networks built from retweet relations. Both quantitative and qualitative experiments show that our proposed method outperforms a few competitive baselines in learning user interests over a set of predefined topics. It also gives superior results compared to the baselines on retweet prediction and topical authority identification. © 2014 ACM.
Resumo:
This paper describes an online survey that was conducted to explore typical Internet users' awareness and knowledge of specific technologies that relate to their security and privacy when using a Web browser to access the Internet. The survey was conducted using an anonymous, online questionnaire. Over a four month period, 237 individuals completed the questionnaire. Respondents were predominately Canadian, with substantial numbers from the United Kingdom and the United States. Important findings include evidence that users have tried to educate themselves regarding their online security and privacy, but with limited success; different interpretations of the term "secure Web site" can lead to very different levels of trust in a site; respondents strongly expressed their skepticism about privacy policies, but nevertheless believe that sites can be trusted to respect their stated policies; and users may confuse browser cookies with other types of data stored locally by browsers, leading to inappropriate conclusions about the risks they present.
Resumo:
Objectives: To develop a decision support system (DSS), myGRaCE, that integrates service user (SU) and practitioner expertise about mental health and associated risks of suicide, self-harm, harm to others, self-neglect, and vulnerability. The intention is to help SUs assess and manage their own mental health collaboratively with practitioners. Methods: An iterative process involving interviews, focus groups, and agile software development with 115 SUs, to elicit and implement myGRaCE requirements. Results: Findings highlight shared understanding of mental health risk between SUs and practitioners that can be integrated within a single model. However, important differences were revealed in SUs' preferred process of assessing risks and safety, which are reflected in the distinctive interface, navigation, tool functionality and language developed for myGRaCE. A challenge was how to provide flexible access without overwhelming and confusing users. Conclusion: The methods show that practitioner expertise can be reformulated in a format that simultaneously captures SU expertise, to provide a tool highly valued by SUs. A stepped process adds necessary structure to the assessment, each step with its own feedback and guidance. Practice Implications: The GRiST web-based DSS (www.egrist.org) links and integrates myGRaCE self-assessments with GRiST practitioner assessments for supporting collaborative and self-managed healthcare.
Resumo:
This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
Our modular approach to data hiding is an innovative concept in the data hiding research field. It enables the creation of modular digital watermarking methods that have extendable features and are designed for use in web applications. The methods consist of two types of modules – a basic module and an application-specific module. The basic module mainly provides features which are connected with the specific image format. As JPEG is a preferred image format on the Internet, we have put a focus on the achievement of a robust and error-free embedding and retrieval of the embedded data in JPEG images. The application-specific modules are adaptable to user requirements in the concrete web application. The experimental results of the modular data watermarking are very promising. They indicate excellent image quality, satisfactory size of the embedded data and perfect robustness against JPEG transformations with prespecified compression ratios. ACM Computing Classification System (1998): C.2.0.
Resumo:
The Electronic Product Code Information Service (EPCIS) is an EPCglobal standard, that aims to bridge the gap between the physical world of RFID1 tagged artifacts, and information systems that enable their tracking and tracing via the Electronic Product Code (EPC). Central to the EPCIS data model are "events" that describe specific occurrences in the supply chain. EPCIS events, recorded and registered against EPC tagged artifacts, encapsulate the "what", "when", "where" and "why" of these artifacts as they flow through the supply chain. In this paper we propose an ontological model for representing EPCIS events on the Web of data. Our model provides a scalable approach for the representation, integration and sharing of EPCIS events as linked data via RESTful interfaces, thereby facilitating interoperability, collaboration and exchange of EPC related data across enterprises on a Web scale.
Resumo:
UncertWeb is a European research project running from 2010-2013 that will realize the uncertainty enabled model web. The assumption is that data services, in order to be useful, need to provide information about the accuracy or uncertainty of the data in a machine-readable form. Models taking these data as imput should understand this and propagate errors through model computations, and quantify and communicate errors or uncertainties generated by the model approximations. The project will develop technology to realize this and provide demonstration case studies.
Resumo:
Methods for accessing data on the Web have been the focus of active research over the past few years. In this thesis we propose a method for representing Web sites as data sources. We designed a Data Extractor data retrieval solution that allows us to define queries to Web sites and process resulting data sets. Data Extractor is being integrated into the MSemODB heterogeneous database management system. With its help database queries can be distributed over both local and Web data sources within MSemODB framework. ^ Data Extractor treats Web sites as data sources, controlling query execution and data retrieval. It works as an intermediary between the applications and the sites. Data Extractor utilizes a twofold “custom wrapper” approach for information retrieval. Wrappers for the majority of sites are easily built using a powerful and expressive scripting language, while complex cases are processed using Java-based wrappers that utilize specially designed library of data retrieval, parsing and Web access routines. In addition to wrapper development we thoroughly investigate issues associated with Web site selection, analysis and processing. ^ Data Extractor is designed to act as a data retrieval server, as well as an embedded data retrieval solution. We also use it to create mobile agents that are shipped over the Internet to the client's computer to perform data retrieval on behalf of the user. This approach allows Data Extractor to distribute and scale well. ^ This study confirms feasibility of building custom wrappers for Web sites. This approach provides accuracy of data retrieval, and power and flexibility in handling of complex cases. ^