916 resultados para Water Law, Land, Irrigation
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
La thèse présentée ici est le résultat d'une étroite collaboration avec une ONG indienne, AKRSP(I), intervenant dans le développement de l'irrigation au Gujarat depuis plus de 25 ans. Un SIG prototype a été mis en oeuvre et nous permet de proposer ime analyse spatiale et quantitative de l'action de cette ONG ainsi qu'une réflexion plus générale sur les leviers de mise en valeur et de gestion des ressources en eau à des fins agricoles. On peut souligner trois principaux enseignements: Les perspectives d'application des SIG au sein des ONG sont manifestes. Les exigences des bailleurs de fonds peuvent néanmoins faire obstacle à leur développement car, indi-rectement, ils favorisent la mise en oeuvre de SI voués à la justification plutôt qu'à la planification et au suivi des programmes d'actions. Ce résultat soulève la question de la pertinence de l'encadrement, des critères d'évaluation et de la conditionnalité de l'aide publique au développement. Les ONG ont un fort potentiel pour participer à la mise en valeur des ressources en eau en Inde et aider à relever le défi agro-démographique indien, en particulier dans les zones marginales où les services étatiques sont en retrait. Les stratégies d'action basées principalement sur l'application des instruments économiques et techniques doivent cependant être modifiées. Nous montrons qu'elles favorisent une inégalité d'accès aux ressources qui débouche sur une efficacité limitée des pratiques d'irrigation, sur un plan agro-technique. Ces résultats soulignent la nécessité de poursuivre une réflexion critique des discours et solutions dominants en matière de gestion des ressources en eau. Deux pistes d'amélioration sont avancées: 1. considérer l'équité d'accès comme un moyen d'optimiser la gestion de la ressource (limiter le volume d'eau par agriculteur pour encourager les choix de cultures irriguées peu consommatrices et l'adoption des technologies d'économie d'eau), 2. prêter attention à l'ordre dans lequel les différents instruments de gestion disponibles sont employés afin de les articuler dans un séquençage temporel pertinent. La Political Ecology apparait comme un cadre conceptuel très pertinent pour engager cette réflexion critique. Elle permet d'intégrer différentes échelles d'asymétries de pouvoirs à la compréhension des situations et des blocages observables localement : inégalités de capabilités et forces socio-politiques à l'échelle locale, politiques agro-industrielles (coton) et jeux d'alliances politiques des castes à l'échelle nationale, discours et conflits idéologiques ou orientations stratégiques des bailleurs de fonds à l'échelle internationale... Notre recherche empirique contribue modestement au développement de cette Political Ecology de la mise en valeur et de la gestion des ressources en eau. - The present research is based on a close collaboration with an indian NGO, AKRSP(I), which is active in the development of irrigation facilities in Gujarat for the past 25 years. We built a GIS prototype providing quantitative and spatial datas to analyse the NGO intervention and propose a general reflection about water resources development and management issues. Three main findings may be emphasized : The potential of GIS within the workings of an NGO is obvious, as an information ma-nagement tool as much as for developing analytical capacity. However, financial backers expectations may not favour a relevant development of this technology. Indirectly, they promote Information Systems built to justify rather than to plan or monitor action pro¬grammes. This raises the question of stricter framework, conditionality criters and stan¬dardised assessment indicators surrounding official development assistance. There is strong potential that NGOs can assist with the improvement of water resources in India. They can help in overcoming Indian demographic-related agricultural challenges, especially in marginal rural areas neglected by state services. However, intervention strategies mainly based on technical and economic management tools has to be adapted. We found that they lead to inequitable access and distribution of water resources what induces a low efficiency of irrigation practices from an agro-technical point of view. These results underline the need to go further in criticizing dominant ideas and guidelines regarding water resources management. We suggest two other options : 1. to consider equitable access has a tool to improve the effective use of water for agricul¬tural purposes (limiting the volume of water available per farmer would encourage them to adopt low water consumption crops and water saving technics), 2. to consider more carefully the order of use of the various management tools available and to structure them in a relevant sequence. Here, Political Ecology seems to be a relevant conceptual framework to enter into such a critical reflection, integrating different levels and scales of political asymmetries at the core of environmental issues. Indeed, the understanding of regional water situations and social stumbling blocks needs not only to consider local capabilities and socio-political inequities, but also agro-industrial policy (e.i. cotton) and caste political alliances at a national scale, as well as ideological and narrative struggles or strategical orientations of financial backers at an international level. Our empirical research modestly contributes to the development of such a Political Ecology of water resources development and management.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
The research aimed to evaluate machine traffic effect on soil compaction and the least limiting water range related to soybean cultivar yields, during two years, in a Haplustox soil. The six treatments were related to tractor (11 Mg weight) passes by the same place: T0, no compaction; and T1*, 1; T1, 1; T2, 2; T4, 4 and T6, 6. In the treatment T1*, the compaction occurred when soil was dried, in 2003/2004, and with a 4 Mg tractor in 2004/2005. Soybean yield was evaluated in relation to soil compaction during two agricultural years in completely randomized design (compaction levels); however, in the second year, there was a factorial scheme (compaction levels, with and without irrigation), with four replicates represented by 9 m² plots. In the first year, soybean [Glycine max (L.) Merr.] cultivar IAC Foscarim 31 was cultivated without irrigation; and in the second year, IAC Foscarim 31 and MG/BR 46 (Conquista) cultivars were cultivated with and without irrigation. Machine traffic causes compaction and reduces soybean yield for soil penetration resistance between 1.64 to 2.35 MPa, and bulk density between 1.50 to 1.53 Mg m-3. Soil bulk density from which soybean cultivar yields decrease is lower than the critical one reached at least limiting water range (LLWR =/ 0).
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
Iowa Department of Natural Resources commitment to improving the management of both the quantity and quality of water resources, a committee was formed to assess the current policies and practices regarding water rights and allocation, and to make recommendations that would assist the state in moving toward a sustainable future. Water allocation concerns have been raised again in the past few years as increases in the demand for water are projected due to ethanol production, geothermal heating-cooling, and potential irrigation expansion.
Resumo:
This literature review serves as a foundation for a transportation and land use public policy education program for Iowa. The objective of the review is to summarize relevant research findings, to review the state of practice and policies of other state and local governments, and to explore land use trends both within the state of Iowa and the nation as a whole. Much of what we learned has been incorporated into the course materials. Because we expect to identify more useful sources throughout the project, this literature review should be considered a work in progress.
Resumo:
The City of Remsen is proactively addressing an increase of nitrates in their public water supply before it becomes a financial catastrophe for them. An intensive assessment was conducted by the Iowa DNR Source Water Protection program as one of four pilot projects in the state. This assessment far surpassed standard desktop assessments and gathered monitoring information in-the-field led by a local watershed group. This was incorporated into a computer modeling program to help the local watershed group discuss alternatives. This comprehensive approach clearly identified the source of nitrate infiltration as a cropland area adjacent to the City well field. Many options were evaluated but only one option provided an economical, viable and secure answer to the water supply needs of Remsen for generations to come. The watershed planning group chose to seek the purchase of this critical area of cropland and convert it to a deep rooted mixture of native grasses. This WIRB funding is intended to be used to acquire a small area totaling 21.1 acres. It represents about 22% of the total local project effort. This will be added to the existing City well field of 40.2 acres and another piece of adjacent property, 35.34 acres, that the City recently acquired as part of an overall aggressive program to protect the community water supply. The City has a signed purchase agreement for 14.4 acres of the 21.1 and a strong verbal commitment to obtain the remaining 5.7 acres. This project has been very active for almost 2 years and is ready to implement immediately upon funding notification. The establishment of native grasses, funded by the local chapter of Pheasants Forever, will take approximately the next three years of operation & maintenance.
Resumo:
Controlling and managing manure-contaminated runoff is a responsibility of every livestock producer. The minimum requirement of all confined feeding operations in Iowa, regardless of size, is to settle solids. Two separate watershed assessments conducted in 2003-2004 by the Lyon SWCD of 141 feedlot sites indicated only 29% have solid settling basins in place. Regulating agencies generally recommend a holding pond followed by irrigation land application which require large capital investments, specialized machinery and additional management skill sets. Producers are looking for more cost-effective alternatives for controlling feedlot runoff and regulating agencies need to know these alternatives will protect the environment.
Resumo:
The objectives of this work were to determine the heliotropic movements of the upper trifoliates for two soybean cultivars, BR 16 and Embrapa 48, during a daily cycle, in three phenological stages and two water regimes, and to estimate the impact of irrigation and daily leaflet movements on agronomic characteristics and grain yield. Heliotropic movements were studied in three phenological stages: V4-V6, V7-V10, and R5 in irrigated and non-irrigated plots. For each stage, the leaflet elevation and azimuth were measured hourly. Under a low (V4-V6 stage) and mid (V7-V10 stage) leaf area index (LAI) the diaheliotropism was slightly more frequent and intensive in non-irrigated than in irrigated plants, only at early morning and late afternoon hours. At R5 stage (high LAI) the paraheliotropism of superior trifoliates was predominant and more intensive in non-irrigated plants. The heliotropic movements are correlated to carbon gain, but not to environment (light intensity or temperature), for measurements at 11h. 'Embrapa 48' expresses greater paraheliotropism than 'BR 16' at high LAI, while 'BR 16' displays lower heliotropic plasticity under irrigation. In spite of significant heliotropic differences, genotype and water availability treatments did not influence the final grain yield.
Resumo:
The water content dynamics in the upper soil surface during evaporation is a key element in land-atmosphere exchanges. Previous experimental studies have suggested that the soil water content increases at the depth of 5 to 15 cm below the soil surface during evapo- ration, while the layer in the immediate vicinity of the soil surface is drying. In this study, the dynamics of water content profiles exposed to solar radiative forcing was monitored at a high temporal resolution using dielectric methods both in the presence and absence of evaporation. A 4-d comparison of reported moisture content in coarse sand in covered and uncovered buckets using a commercial dielectric-based probe (70 MHz ECH2O-5TE, Decagon Devices, Pullman, WA) and the standard 1-GHz time domain reflectometry method. Both sensors reported a positive correlation between temperature and water content in the 5- to 10-cm depth, most pronounced in the morning during heating and in the afternoon during cooling. Such positive correlation might have a physical origin induced by evaporation at the surface and redistribution due to liquid water fluxes resulting from the temperature- gradient dynamics within the sand profile at those depths. Our experimental data suggest that the combined effect of surface evaporation and temperature-gradient dynamics should be considered to analyze experimental soil water profiles. Additional effects related to the frequency of operation and to protocols for temperature compensation of the dielectric sensors may also affect the probes' response during large temperature changes.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy